“AD-A149 323 DESIGN OF A PICTOR[RL PROGRAM REFERENCE LANGUAGE(U)
DVRNCED INFORHRTION HND DECIS[ON SVSTEH HgUNTRIN VIEN

/DS-
UNCLASSIFIED RFOSR TR 84 1159 F49620 81 C BG

END

uneo

one

F/G 972

A B s S P HUCESSC L Pl Pl S PR, ST A et iU B vk S e P ans A Sree SMCTINCIHS Jurl vl Sh S A S A S RS A 15 et N AR A

m" |0 &0 j2s

o 132
ol -

m" T =

i ada
i s

= L

2l pie

O

4

v ..
Lala®el,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU GF STANLARDS 196+ A

v
HAPSOLILPL T SOGN LV AL SIS S N

LA A A - S GG = G e r e
»

ORGP |

R

CIT

AD-A149 323

LPR am Sask i et ACIIRS 2ute It Bl An aren A0h AEb g S dnd s bt Aam dhow Ba § 4R SacoRap Ser cIaRabre/airant Sl AL ot 6 aed BPE AR R NS B e I E R R A

Al.DS /=2

- -—.——-’—'.
4
tinal Report -]
- ~d

TN-10T 1-49

DESIGN OF A PICTORIAL PROGRAM RIEVERFNCY LANGUAGH }’_:. R

fric A. Demeshek o T
Jefrey €. Dean
Susan G. Rosenbiaum) 3
Brian P, McCune v

Advanced Information & Declsion Systoms
201 San Antenio Zirele, Sute 286
Mountaln View, CA 9:040-1277)

August 1481
Final Technlcal Report for June 1, (481 - 2t alay, 1984

Anproved for publie release; distribution writmited

B »em. -v:._l
P’reparcd (or: L“; i g{.

B
1= =
United States Alr Porce E.__::_CTt

Alr Force Cflice o Selenatifle Researel: DEC 3 1 1984 ‘
Duliding 410

Boiling Alr Foree Pase, DO o03s2

D

The vlews, opinlons, and/or findigus contalned an oona renore a-e tho-c of the
authorst=) snd shonld not be constryed ax oo it Dgestment of the Alr Foree
ot bon, poelley, or destslon, unless o deehinnted by oo St Coenmentatlon,

ADVANCED INFORMATION & DECISION SYSTEMS
Mountain View, CA 94040

g4 12

- . PR . NLAA N - e LA - B

- UNULASSIFIEZD

SECURITY ZLASSIF'CATION OF THIS PAGE

7 padiarenii e S SUE L L
L LA MR arI A~ W ACe T A ACESREL SV APN A°M AR S SeuL DL M P~ ot SR AN et B oA il I) o ?
A - a RS .
<
v 4
—

: _ } .
hd REPORT DOCUMENTATION PAGE]
) - LT
- s REPORT SECURITY CLASSIFICATION o AESTRICTIVE MARKINGS <]
UNCLASSIFIED e]
2¢ SECURITY CLASSIFICATION AUTHORITY 3. D'STRIBUYTION/AVAILABILITY OF REPCRT G
. . . . B R
Approved for public release; distribu<ion °
M OECLASSIFICATION DOWNGRADING SCHEDULE unlimited. -- "
4 Pt AFCRMING ORGANIZATION REPORT NUMBER S| 5 MONITORING ORGANIZATION REPORT NUMBERI(S, .
L X - (-\ . .
1-1014-4 AFOSR-TR- T4 .. 1150 R
ta NAME OF PERFORMING ORGANIZATION o OFFIiCE SYMBOL 7a NAME OF MONITORING ORGANIZATION -t ©o
Advanced Information and (If appircabies Air Force Office of Scientific Recscarch L 1
Dacision Systems s]
6c ADDRESS :City State ond 1P Cude 70 ADDRESS (City, State gnd ZIF Code: N ' sl ..:.
201 San Antonio Circle, Suite 286, Directorate of Mathematical and Information R
= .- '] = R
. . - . 3 s o RN
Mountain View CA 94040-1270 Sciences, Bolling AFB DC 20332]
88 NAME OF FUNDING/SPONSORING 8o OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER) ,‘ 4
ORGANIZATION (4f applicabie; A
ATO3R e F49620-81-C-0067 ’
8c ADORESS 'City, State and ZiP Coaes 10 SOURCE OF FUNDING NOS]
PROGRAM PROJECT TASK WORK UNIT .
ELEMENT NO. NO. NO NO BN
. - I
Bolling ATR DO 20332 61102% 2304 A7 o 1
t1 TiTLE Inciuce Security Classification, ' b
DESIGN OF A PICTORIAL PROGRAM REFERENCE LANGUAGE . , -]
—-_ ————enegy EEE
12 PERSONAL AUTHOR(S! . L R
Eric A, Domeshek, Jeffrey S. Dean, Susan G. Rosenbaum, and Brian P. McCune. -
13a TYPE OF REPORT 13b. TIME COVERECT 14 DATE OF REPORT .¥r. Mo., Day+ 15. PAGE CCUNT
Final fRCcM1/6/83 t031/5/84| 31 AUG 84 70 ®
16. SUPPLEMENTARY NOTATICN .
T 3
R ~ L
17 CCSATI COZES 18 SUBLECT TERMS Conuinue on recerte if necessar~ and identify by block numoder R 1
ckio | amcoe s.s oA Program Reference Language (PRL); Extended Program Model)
; T (EPM); Inte'ligent Prograr Editor (IPE); program documenta- - .,._‘
: ‘ tion; artificial intelligence (AI): CONTINUED ' |
19 ABSTRACT Continue on reverse :f necessary ana identify by bluocr number.)

‘This report covers the work done during the third year of the Program Reference Language

L (PRL) project. During this year we focused on the problem of developing an adequate means
to express the types of queries we had earlier identified as within the province of the) ®)
o PRL. Thus, we studied both the structure of the actual query language and the design of .. - Aj
-j"_‘ the user interface. The query language on which we concentrated was a pictorial interface R
;, 1 designated the PRL Pictorial Language (PRL/PL). The essential idea is that the users ; ft}
] buiid templates to sketch out what an item that satisfied the query would look like. for o1
L T programs, this means specifying an arrangement of standard program fragments that .' 1
o characterize the desired part of the program. This document will discuss the design and =
*. use of this pictorial language.JY L :
y : R
{ L]
r =~]
;f - [20 0.5TRIBUTION AvaILABILITY SF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION °
o JNC_ASSIF ED UNCMITED <= SAME AS RPT _ DTIC USEAS —_ THNILASEITIED
) ila “AME 3F RESPINSIBLE NT vIOUAL 221 TELEPWONE NUMBER 22 OFF-CESYMBT . ' :
;, dnecuar A va Coar
| Dr. Robert N. Buchal | 0 ~i-- 4030 - J
20 FORM 1473. 83 APR EDIT'CN OF 1 .AN 73 'S DBSOLETE e °
[) SEZURITY JULASSIF Ca™ TN L» =S eale

. UNCLASSIFIED

[‘.‘\\‘\T\"ﬁ'\ LS A ot wa maa

P I APt ol S C

SECURITY CLASSIFICATION OF TMIS PAGE

A

\
X

Lo

r

Y

ryvvevw

ITEM #18, SUBJECT TERMS, CONTINUED:

knowledge base; multiple representations; protocol
analysis; user modeling; retrieval language; debugging program cliches; program annotations,

[m———y

. B
Salaofaa

SECUR. ™Y CLASSIF Ca™ '3O8 1F TS Palg

. o
-

A Cata imta¥Ne w

Bl
‘
“«
4

-l
«

)
«
«
‘
“«

RN
et

et iatiata

[RS =1
t
l

Ava.i bility Codes

———— - —-—

Lvaii and/or

Dist Special TABLE OF CONTENTS

1. INTRODUCTION
1.1 OVERVIEW
1.2 RESEARCH OBJECTIVES
1.3 GUIDE TO READING
2. PRL PICTURE LANGUAGE: PRL/PL

h 2.1 INTRODUCTION TO PRL PICTURE LANGUAGE
2.2 DESCRIPTION OF PRL/PL

3. FORMAL QUERY LANGUAGE: PRL/FL
4. PRL/PL EDITOR INTERFACE
5. PLANS FOR FURTHER DEVELOPMENT

5.1 QUESTIONS/ISSUES
5.2 FUTURE WORK

)| 6. PERSONNEL
6.1 PERSONNEL
6.2 INTERACTIONS
6.3 PUBLICATIONS

7. REFERENCES

Page

29
32
34

34
36

37
37
40
43

16

APPENDIX A. i TRt 47
APPENDIX B. 48
APPINDIX C. _ 49
Liof. ;s LermaL Lo flviglon
>
P -i-
BT S A s BT

g
3 .
R
| LIST OF FIGURES 'S
PAGE o
.
e 1: Find The Functions That Contain Loops L
Find The Loops Contained In Functions = 1
Find All Functions Containing Loops And R
o If-Statements _ 4
4: Find All Functions Containing A Loop 10 L
Followed By An If-Statement l
5. Find All Functions Which Contain Loops 11 :
_ That Contain If-Statements 3
} ' Find The Function Named Bar 12 . 1
o Find All Functions That Use The Variable Foo 14 1
‘ Find All Functions Containing Loops Or 15 1
, If-Statements S
- 9: Find All Functions Contalning Loops And 16 0
) If-Statements e
10: Find All Functions Containing Loops Or 17
) If-Statements '..‘j'.:_';T
U | 11: Find The Functions That Do Not Contain Loops 19 . e 1
‘ 12: Find The If-Statements Not Contained in Loops 20 j
} : 13: Find The Functions Which Have A Loop Not 21 .
Followed By An If-Statement E
- 14: Find The Functions In Which All Loops Contalin 23 . 6;
if-Statements) 4
15: Find The Functions Which Contain 2 Loops That 24 - 5::;
Contaln If-Statements > ,
16: Find The Functions Which Contalin An If-Statement 25 .:
Not Contalined In A Loop g .1:1
17: Find Those Functlions That Use Some Variable 26 R
Before Setting That Variable “'- :A_f
! 18: Find Those Functions In Which A Variable 27 o .
Is Not Set Before That Varlable Is Used L
ii 7
T
| S
- h
PRI W, N . " PR X aa N L a _.. PP W, ¢ ST O 1,‘\; ‘<;~~;-'.'J-_'A . .. -‘;

| pag g am A e aie den ara 4o e a2 RO MM Gt el e sl Gl Sad Qi ShAEEeEC A AR S A s o o B T S— -
- - L. eI TS RECER LaP i o ad

19: PRL/FL: BNF Specification 30
20: An Unsatlsfiable Precedence Graph 35

- 4
g
4

-
-
-
v
4

<4

- r

- - .« e L. - - . e - °

- " . v v N . oo - s - oo -_' b * - = s - .) s " . N :) "

o e . - . - ‘. AP N R L L. Ll . . - .o) . e et

- SRS WA G T LIPS, UL, . ala a- y Y Y N S s o el -) :
- al 2 aala®aleale e iaa. e B Y PPy TR WS N A WS U U DTS S PGP, |

MR AR S R R Tt Ra Tha s

rvn".

Introduction Section }

1. INTRODUCTION

This report documents the third year of work on the Program Reference
L.anguage project (PRL), which Is a baslc research effort almed at the creation of
a mechanism for flexibly identifying the interesting portions of programs. During
this year we focused on the issue of developing a means of expressing the types of
queries identified earlier as within the province of the PRL. We studied both the

structure of the actual query language and the design of the user interface.

The PRL is designed to allow the user to describe a plece of a program so
that an automated search mechanism can retrieve any matching program frag-
ments. An extended PRL might also allow the user to specify transformations to
be performed on a selected set of program fragments, but until we have time to
develop and classify a useful set of such transformations, we consider only the
problem of specifying and performing searches. The work which preceded this
study is discussed in length in the annual reports for the first and second years of
resecarch and will be recapped only briefly below. (See ‘‘Searching a Knowledge
Base of Programs and Documentation,” (Shapiro-83] and ‘“‘An Informal Study of
Program Comprehension,” [Domeshek-84] for more details.) This document
focuses on the design of the PRL Picture Language, the pictorial interface to the

underlving databasoe.

LN DL Sal A bad Janik Sel Sust Wl Sal 4o Aud Aed ond g ek o LR LA/ Al Al A/l el Al Sl Al el dad ek aud

e

. S
S el
. . C
PO - s e - e

o .
PR A

s

s vy

T WY TV VY VTV ¥

MR P IR A e]

DA . S S S

Lin T T R A 2

.

(

W M T W T A I T CiC SN AN AL St GHAL SN Pl S S st P et aOu et S e Rl St s e sl

Introduction Section 1

1.1 OVERVIEW

Earlier PRL research led to the definition of the Extended Program Model
{FEPM) [Shapiro-83], a database which holds multiple representations of computer
programs. The particular forms in which programs were to be stored, the types
of analyses required to generate these representations, and the information made
available by these analyses were considered. Viewing the EPM as a database
leads naturally to a view of the PRL as a database query language. Our goals for
the PRL, combined with our design for the EPM, gulded us In the design of the

query language.

Study of existing database query languages indicated that the task of
designing a formal query language would not be trivial. Although the deflnition
of a language capable of expressing the required searches might be straightfor-
ward, such a language would not be easily usable by programmers. However,
such a formal basis is essential for the PRL, if only for internal use. Thus, while
some time was spent studying the issues of a formal query language, the majority
of the effort was spent investigating the possibilities of two options for more

“friendly ™ query languages that could be translated to the formal language.

The first option considered was a limited natural language interface that
was designated the PRL Natural Language (PRL/NL). There are already several
natural language interfaces designed for database applications, and early PRL
examples had alwayvs phrased sample querles in tills manner. Our own experlence
with EFnglish renderings of PRL queries caused us to believe that they tended to
ob<cure the regularity of the actual relationships being expressed. A survey of

the Titerature revested many problems complicating the design of a compact and

-2-

NP A h > RGAT SO A U G

P
- e taa

PR AP PSP

Y

e el e

i A

P Y

r“‘-":‘ FR B A Al ACI A e e S S AN uhd Aharase: (AN S e e AR A et St S e e I ACEMAA A SAE 2 Sha AStACS Ar i e o S

Introduction Section 1

consistent subset of English intended for use as a query language.

The second option, and the one on which we concentrated, was a pictorial
interface, designated the PRL Picture Language (PRL/PL). This approach was
originally inspired by the Query-By-Example (QBE) database query language
iZ100f-1977); however, the Picture Language Is considerably different from QBE.
In the PRL, obvious specific knowledge about the structure of the database has
been incorporated to increase its power and decrease Its complexity. The essen-
tinl idea behind QBE and PRL/PL Is that a user partially sketches out the pic-
ture of the requested item. For the PRL, this means specifying an arrangement

of program fragments that characterizes the desired part of the program.

1.2 RESEARCH OBJECTIVES

Some of the key research issues driving the PRL effort are:

1. What are the most useful ways of referring to parts of a program? Sald
in a different way, what vocabulary do programmers currently use to
deseribe portions of their programs?

. What information must be included In a knowledge base about pro-
grams and documentation in order for it to support program search?

te

3 What information must be included in such a knowledge base for it to
support a variety of Intelligent tools for accessing and manipulating
code?

1. How shoutd Information of this kind be represented?
5 How should application specifle knowledge be Included?
6. How can user-supplied assertions and other documentation be acquired

and integrated Into a knowledge base for use In program referencing and

aother tasks?

[P S N PR P P P S A MPUP U WA W S S e Ya - - a - - - P - - - PN -

o

ey g

Introduction Section 1

How can search requests be expressed In a uniform reference language?

_\l

8. What form of a search mechanism is required to Implement these refer-
ence requests?

9. How can these searches be performed efficiently? In what ways can
search be limited or deferred in order to malintain good response time?

1.3 GUIDE TO READING

The following sectlons provide detalls about the PRL. Section 2 Introduces
the PRL Picture Language (PRL/PL) and gives examples of its usage. Section 3
discusses the PRL formal language (PRL/FL). Section 4 provides a description of
the editor interface for the PRL/PL; section 5 discusses some of the problems still
‘Tp_{naining with the PRL/PL and PRL/FL and our future research plans. This

N,
repori concludes with discussion of key research personnel and their activities.

DK, R, VN L. SN NP, S S D - a e - -« s - - e . -
ata ey L.

A CETSwW T W T - — e — .
o LR ; T Rl ~w —w At S S S e At T i et A e
e " . - -

Aadadendad

@ -

il

Al b

N
ctbnindh,

[LSNP

B T R I o . Taataci ~y - - »-
- Ty AR AR S S8 At At e dhalt il /Ui Tt St g Sept it Sese S i Jhatt Sau ans Juo e ave e e 2

PRL Picture Language: PRL/PL Section 2

2. PRL PICTURE LANGUAGE: PRL/PL

2.1 INTRODUCTION TO PRL PICTURE LANGUAGE

The PRL Picture Language provides a user {riendly Interface, making it
easy for programmers to specify searches through pre - .." freely combining
information from the multiple representations of the program maintained by the
Extended Program Model, or EPM. There Is a formal mapping from these pic-
tures to the PRL Formal Language. An underlying operational semantics for the
Formal Language thus provides a formal means for Interpreting plctures

expressed in the Picture Language.

The PRL,PL is similar to QBE in that a query is specified by describing a
tyvpical item that would satisfy the query; however, as the nau.c Implies, the
interface is picture oriented. QBE Is designed for relational databases; its tem-
plates are partially filled-In tables representing the various relatlons. Due to the
internal tree/network format underlying the EPM database, the PRI is not well
suited to the relational model. The templates for PRL/PL querles reflect this
network structure in that a major form of composition Is nesting of boxes inside

other boxes,

The PRI PL Is Intended to be Intultive and easy to use for typleal simple

requests; however, it shares the problem found In QBE in that complex requests

2 .4 PN WP TSN A h . PO SO YO T Dt IS) Ta -

P W W NN

WL NG VI SO S T AN W Seaande ST N AT i AP S N e b e - Y P

PRL Picture Language: PRL/PL Section 2

begin to require complex templates. Since the spatial relations of pleces of the
PRL/PL query tend to be meaningful, though, this problem should not be as
severe. With the PRL/PL, the query iIs composed of boxes that form a picture of
the overall shape of the query, while in QBE, the user must work with many

=eparate tables representing the database relations.

The goal in designing a plctorial query language Is to ensure that any query
specifiable in the formal language has at least one plctorlal representation. The

PRI./PL must:

e Provide a mapping to the formal query language

e e simple and intuitive

e Retain the integrity of pictorial query fragments across different contexts,
which Implles a malintaining of composabllity across different environ-

ments

2.2 DESCRIPTION OF PRL/PL

Yieture quertes are composed of boxes representing fragments of programs.
The voeabulary of the PRL/PL conslsts of all of the program fragments under-
~toed by the KPM. Each fragment Is represented by a box. The basie operator
of composition i~ containment; if a pleture shows a box inside another box, this
specifies aomateh against the database In which the fragments of code have the

sarne relationship.

o i) v MR A AP St T T T T Y Y S N S T T T T T N T Y N Y T Y G N T N Y W Y T YU w T w T v 1

AL, L. S

3
N

s
L

P

FEDUSY W

|

)

F™= ™~ "«

= LR SRR ST AR L T TR Tl Bl et Al IRl Al Tk Rt it A d el tadi s " S S Yl T § - -
~ N~ . . - - S - Al Wl Rt Sl Rl M Sl Sl St Sl el i I e Al A Td Tk SR S RS A Rt Il sl St Tl ok IR

PRL Picture Language: PRL/PL Section 2

The picture representing the query “Find the FUNCTIONS that contaln
[LOOPS™ is shown In figure 1. Note that there is a box of type Junction with a
box of type loop inside of it. Fragments of code which are functlon definitlons

that include loops will match this search template.

FUNCTION

LOOP

Figure 1 FIND THE FUNCTIONS THAT CONTAIN LOOPS

A convention used in PRL/PL pictures is that the object to be returned as
a result of the query Is shown In a highlighted box. Conslder the alternative
query CFind all LOOPS contalned in FUNCTIONS' shown in figure 2. Note

that the box representing the loop is now drawn with heavier lines. This query

-7-

' o . ! e
L] * . P
PO PN WS S W B O

—

- = W v:ra-;—r.-u}

™

— ol s e TR e A Ak i chte Jhe dE et St RIS JENE SN I Y

AR A S SN NI N AR A R AL S it e N ND . T Calri L. B « . S

PRL Picture Language: PRL/PL Section 2

will return a set of loops as its result.

o ~ FUNCTION T
@
Loop A
o)
1
.. 4
. 1
|
{
-.1
o
. .A"‘
oo
Figure 2: FIND THE LOOPS CONTAINED IN FUNCTIONS @ i
Queries can be much more complex than these first examples. We will sur- ;.i.
vey the variations and additional features of the PRL/PL, introducing each new -?_{"
feature with an illustrative example. ~. -
It is possible to speeify that an oblect contain more than one object. The L
basie form of such a compound contalnment Is Hlustrated in figure 3, the pleture o
representing the query “Find all FUNCTIONS containing l,(.)()I’S and 1l
-8- .

R L I R i -
A - R i M A Al Ml Sl B\ G A A SPA ATA AR o & a/ie ot i A i A e A Ind S ah o sy ang o

PRL Picture Language: PRL/PL Section 2

STATEMENTS."” The box representing the function now contains two other
boxes, one representing a loop, the other representing an tf-statement. The search
is again intended to return a set of functions, but now only those that contaln

both a loop and an tf-statement are valld matches. Note that there Is an implicit

conjunction of the inner boxes.

FUNCTION

LOOP

[F-STATEMENT

Figure 3: FIND ALL FUNCTIONS CONTAINING LOOPS
AND IF-STATEMENTS
If we wanted to perform the search “Find all FUNCTIONS contalning a

LOOP followed by an IF-STATEMENT,' the graphical query would look like

‘l‘l .
;.“_- ..a‘|
, L

AR
P WY

My & NN NS ook S A gnine NER ma an an mn o

L

P ar am e

ST PR U

PRL Picture Language: PRL/PL Section 2

figure 4. Note the arrow drawn from the box representing the loop to the box
representing the if-statement; this Is the pictorlal representation of precedence, or
textual ordering. It may be possible to extend this ldea to represent flow order-
ing. as this also might be a useful search constraint and the information can be
generated from the EPM. Precedence relations are restricted to apply to objects

taking part In a conjunction. Note that without the arrow, figure 4 becomes

identical to figure 3.

FUNCTION

LOOP

IF-STATEMENT

Ficure 1 1 IND ALL FUNCTIONS CONTAINING A LOOP FOLLOWED
BY AN IF-STATEMENT

-10-

>

-
g
g
g

TV 7

YV T e e

YT e T v

v VY o

RO S G | AJPhie

Laan amn o 4

fe

(

T T T TN TR T R TR T R TR T T T Y T R TR Y U LAY YL S ANLE LN mM e e e e, v vt

PRL Picture Language: PRL/PL Section 2
The nesting of boxes within boxes Is not limited to a single level. For .
example, the query, “'Find all FUNCTIONS which contain LOOPS that contain)
IF-STATEMENTS" is illustrated in figure 5. Agaln, multiple objects can be con- -
tained and arbitrary precedence relations can be specified at any level of nesting. . “
-1
FUNCTION
°
®
:
L.OOP)
g
IF-STATEMENT o
R
g
.
s
L
‘_. Y
1
Figure 5: FIND ALL FUNCTIONS WHICH CONTAIN LOOPS o
THAT CONTAIN IF-STATEMENTS o e
Objects stored in the KPM have an expliclt structure. For example, a fune- P
o
tion ix composed of a name, parameter-list, and body. Such named parts of an ® ‘
abject are ealled slots and may be used In ereating the pletorial query. ‘The _{ .
-11- °

-9

P-'F A Nt Sbdh Bk a e

PRL Picture Language: PRL/PL Section 2

query “Find the FUNCTION named BAR'" Is shown In flgure 6 as an example.
In specifying the picture, the user asked to see the slot of the funclion box. By
placing the string “BAR" In the sub-box labeled name, the user specifies that the
string *‘BAR" must be contalned In the name part of the function. When slots
are not used, the containment will be considered satisfled if It occurs in any of

the subparts of the outer object.

FUNCTION
NAME: BAR
PARAMETERS:
BODY:

Figure 6: FIND THE FUNCTION NAMED BAR

TryrtroerparTi e w R A O B T o P T T T T T rwrw T 3 "_.—q
-,
L |

P/
.

e N LN
s A F

b,

! L

-
. 12 °
‘ . . - .-
S . .
et I PRI ks et ot - PR R T T S T SN Y U S0 N S S W I W S R O ‘A e e et .

N S A AR AR A S S h e e e Sah e g Fan g G e Gas Sl it Wl ot e e d sad Al i S S ot o as) DL Al B G APvl SV AP SNIs s Jane Sy arces ave

PRL Picture Language: PRL/PL Section 2

Additional relations are ‘ntroduced through the vocabulary of object types.
For example, fligure 7 illustrates the specification of the query 'Find all FUNC-
TIONS that use the VARIABLE FQOO.” The box labeled uses represents a data
flow object in the KPM database. It has a single slot which holds the object that
is being “used.’’ Shmllary, the relationship of one function calling another can be
represented by the containment of a calls box, another valid EPM object, which
in this case is shown from the control flow perspective. Since most Important
information about the program is represented explicitly in one of the views of the
EPM, almost any important statement about a program can be made in terms of

containment of objects.

-13-

A P R T . LUy

Ao ._- R ‘_- R

PRIy

| S Sl Ndte i a v A4 M A B/ DU B e BA R M N S Al AE A & Aradc i ISP AR s sndranet A BEdR AN et A At B

PRL Picture Language: PRL/PL Section 2
-. FUNCTION
USES
VARTABLE
v OBJECT: (FOO 7

1

Figure 7: FIND ALL FUNCTIONS THAT USE THE VARIABLE FOO

A pictorial query can be composed of more than one top level box. All
separate subpletures in the query that return some type of object must return the
same type of object. The sets of that object type generated by the separate plc-
tures are unioned together to form a single set as the answer to the entire query.
Thus having separate top level boxes Implles an OR operation, allowing the
results from several varlants of a slmple query to be comblned. For example

figure 8 shows the picture for the query “Find all the FUNCTIONS that contain

LOOPS or IF-STATEMENTS.” -

' -14-

Ty

il

,’..'. A c e e .
Y SPVERLNPLAS VTV SV TP TSGR W SRR YV S N

dendod

ol

.
. .
La .y . a

.
PRLEP R A |

bt taa e o

.

At

P

L}

)

T A 4 . P v
-, - v o e i SR agi S R R T Ty

PRL Picture Language: PRL/PL Section 2

FUNCTION

LOOP

FUNCTION
IF-STATEMENT

Figure 8: FIND ALL FUNCTIONS CONTAINING LOOPS
OR IF-STATEMENTS
A special pair of boxes called AND and OK boxes are used to clarify
representation of conjunctions and disjunctions. The boxes can be placed any-
where normal program object boxes are legal, but they have a special effect on
the lnterpretation of the boxes they contaln. Strictly speaking, these boxes are
not essential, as any requests can be constructed without them. However, they
are important from a user interface perspective (l.e., they make the PRL/PL,

casier 1o use, not from a mathematical perspectlve.

-15-

.

el @
S

@
il Aemamemia . o

BRI " N S Tk - B

l‘u l‘,lA:

Fae ot

PRSP

g v g W U = —————— - - - — N c-— - - . . —
> LAt Tt ey 805 Ao Bak A et ain ol ad At e B alat R s tied b e Kot Bk Tt IOl Rl Roe Tof B Rt el Bei St TEA Tt R Bt e et TN TEE et T i R g

! PRL Picture Language: PRL/PL Section 2 K)

l An AND box is satisfled if all the things it contains are satisfled. Flgure 9 B ':";
illustrates the use of an AND box to represent the query “‘Find the FUNCTIONS
containing LOOPS and IF-STATEMENTS.” Note that every normal program
object box functions implicitly like an AND box as illustrated by the equivalence

| of figure 3 to figure 9. The primary use for AND boxes Is where the default
interpretation would be OR, such as within an OR box, or at the top level of the

query. -

FUNCTION

' AND o

LOOP

2 IF-STATEMENT L

[P ey

Avnead

Figure 9: FIND ALL FUNCTIONS CONTAINING LOOPS
AND IF-STATEMENTS L

| -16-

v v — \ av “—pe
N P PSR CREa) T SATRUAIAE I Sl B AR Sue en e Sa Aes . T —— -v- T

¢ PRI Picture Language: PRL/PL Section 2

An OR box Is satisfled If at least one of the things it contalns is satisfled.
Figure 10 illustrates the use of an OR box to represent the query “Find the
FUNCTIONS containing LOOPS or IF-STATEMENTS."” Note that In this case,
the OR box is needed to force the desired interpretation, rather than that galned

by the default of figure 3; it should be also noted that this is the same query as

that represented in flgure 8.

FUNCTION
I OR
4 LOOP

- IF-STATEMENT

N
. L
q
Figure 10: FIND ALL FUNCTIONS CONTAINING LOOPS
OR IF-STATEMENTS
L]
. -17-

Ll A Aadh Audh A

.‘L‘___!'(_..‘..'

PSR W0

Adtbed 0

T R S i Bt o, St U T e Gt e dve Mo Aatt et d
L.eh ~ ~ B - A B Paliated LS T SN A e S i O AN "l S AR A B e bt AN Ihr SAacH e e B "~ b |
I P

PRL Picture Language: PRL/PL Section 2 - 0.

-~

¢

®
.

When constructing a search template in the PRL/PL, users may also
specify objects whose appearance would invalldate the match. The notatlon for

negation is to use a negative image (e.g., reverse video) in displaying the negated

haa o aia o oAl

- box. In the figures illustrated in this paper, slashes will be used to represent °®

reverse video. For example figure 11 shows the plcture representing the query,

“Find the FUNCTIONS that do not contain LOOPS.” It Is also possible to

.
i
O
e
. e
, e e N
BRI .
UL .
PRI
ot faoae e g

negate parts of the context for an object which must appear. For example figure °®

12 shows the query, “Find the IF-STATEMENTS which are not contained in

LOOPS.™ j

3
v e
S) i gt g

p.
3
]
-Q
1
. ..
Ai
\
: 1
.]
: -18- ®

MMM MMath Snat Jenmih Sags B s Mend S S gk SBegh B S S Rl EA AR WA G S A3 S A AR R oW N h
A Pl . 3 ARy g - —
- A A . - Y, mm—
. P . . « ' . -

Section 2

PRL Picture Language: PRL/PL

FUNCTION

LOOP

TVLIP TN WO R)

Figure 11: FIND THE FUNCTIONS THAT DO NOT CONTAIN LOOPS

-19-

o v

W TN T T AERAE S Sl i S la Al At M gy A A A’ S AN C AR (A S LA Bl O A SISt S e Sk arull e sasy o e
PRL Picture Language: PRL/PL Section 2 e
LOOP .. @
/ / / ’
/ .
% 5
]
L
3

Figure 12: FIND THE IF-STATEMENTS NOT CONTAINED IN LOOPS

When used in combination with precedence arrows, a negated box will only
disipalify a potential matehing code fragment If the disallowed object appears in
the speeified relation to other objects. For example, figure 13 represents the
query CFind the FUNCTIONS that have a LOOP not followed by an IF-
STATEMENT. A matehing FUNCTION may contain [F-STATEMENTS, as

longe as there is a LOOP which textually follows them.

-20-

A z LI femmtaalE o ta o maiada o oaloaco

. -
WL
U W)

P S

'r.- Adind et A S TR T R TR R TR L TR IR T R TR TR e S AT Sl il Wl el AR ML BV S S A S of BT 2 L 4 v, _V‘!
’ PRL Picture Language: PRL/PL Section 2 o
B
4 FUNCTION -9
LOOP)
..]
- o .
- R
®
-]
]
IF-STATEMENT E
;_ L
[]
7/ V 1
l /¢ ®
u °
Figure 13: FIND THE FUNCTIONS WHICH HAVE A LOOP
NOT FOLLOWED BY AN IF-STATEMENT o
o _
When a box representing a program object Is instantiated, it Is a statement :
that such an object must be present for a candidate reglon of code to be a suc-
cessful mateh; all that Is required Is that one such object exist. Thus, all objects]
®
in PRL/PL queries are, by default, assumed to be existentially quantified. .
R
Y
)
, There are other possible meanings a user might want to express. The :
®
PRL/PL allows the explicit speclflcation of elther universal quantification or]
-21-
] °
1

. X 5 . . .
U S N S P

0

..fﬁ-.",f,,,,
4 ' '.

L S g

v

— wrv.f.T. g
m

YT T MEANLENSR Sran ar or SIS o an ey

—

N R e —— ————— o MR A e e e At e Javser sane ser - —— -

PRL Picture Language: PRL/PL Section 2

integer ranges for cardinality constralnts on program objects., The operation of

negation also has an implicit effect on the quantification of the negated terms.

Figure 14 depicts the query, ““Find the FUNCTIONS in which all LOOPS
contain IF-STATEMENTS." Compare this with figure 5; the two differ only in
the explicit quantification on the box representing LOOP. The effect Is that the
mere existence of a LOOP containing an IF-STATEMENT 1s not enough to
guarantee that a FUNCTION will pass the test. If there are other LOOPS con-
tained in the FUNCTION which do not contain [F-STATEMENTS, then the
FUNCTION will fall to satisfy the specified condition. Also note that it is not
required that a FUNCTION contain any LOOPS to pass the test; If it has no
LOOPS, then all the LOOPS 1t has contain [F~<STATEMENTS. (Or, to put it

another way, there is no LOOP which does not have an IF-STATEMENT.)

-22-

e S0 U SUUE S U SRR, oy M. PR s . LRGP, A ‘A

x|
-1
|
»

a

P T L. fn et AninCitet. St eite JURCM s Aot A AN I A S S A A A L SRR Bl AT AR AN A R B AT A I e iat Rt B A ThA s A S|
' PRL Picture Language: PRL/PL Section 2 .
K FUNCTION -®

LOOP ALL s
2 [] 7
IF-STATEMENT S
[
‘ °
2 o

Figure 14: FIND THE FUNCTIONS IN WHICH ALL LOOPS CONTAIN

IF-STATEMENTS .
Figure 15 gives an example of a PRL/PL query that contains a cardinality
constraint A cardinality constraint can be any number of natural numbers or
natural number ranges. The figure represents the query, “Find the FUNCTIONS . ‘
which contaln 2 LOOPS that contaln IF-STATEMENTS.™
®
-23- T
e
e e e e e e I U U S SR U S Vi, ST RO

m—v-_ T T ——"—" — T T - R Ao R S Ak Bt e St

-’ PRL Picture Language: PRL/PL Section 2 e

E FUNCTION)

LOOP 2

IF-STATEMENT

PP S TP PR Y

Figure 15: FIND THE FUNCTIONS WHICH CONTAIN 2 LOOPS THAT
CONTAIN IF-STATEMENTS

‘ Lt
. P .
PRI S [SN NN

nod

Figure 16 shows an example with a negated box. The query means “Find
the FUNCTIONS which contain an IF-STATEMENT not contalned In a LOOP."”
Note that the quantification on the negated LOOP box has effectively been
fiipped to universal. The query means that for all the LOOPS in the FUNC- 1
TION, there is an IF-STATEMENT not contalned in any of them. If the : 41
quantification had not been changed, the query would require the existence of -
some LOOP that did not contain an IF-STATEMENT, and other LOOPS in the R

-24-

oo .
LS . A R IR . . .
. et) A AT Y e e e o . . o
W AR AT aia ceasla s a Ala a‘a alaSa s s . aa PEAPS. VISP 2 o P - LI, A 2 PO o |

- RSDARG:~ aaans
- P .o

L e
.
¢

'ﬁw -

p——

v

A

S RARARE \Oors

TNt TIT Yy
PR MY i
et

rv vy ¥ Vv

- R L A e e — W - -
.. LT TN T - LA S A Al GG Sl S S it ot it Aad-ale 2o o iR ad Ul s aans abe ae ceak s e aans v - -
Y . T T T T e

PRL Picture Language: PRL/PL Section 2
) FUNCTION could still exist that did contaln an IF-STATEMENT.
FUNCTION

- LOOP

. Figure 18: FIND THE FUNCTIONS WHICH CONTAIN AN [F-STATEMENT
NOT CONTAINED IN A LOOP

The PRL/PL can handle query meta-variables. The notation for these vari-
ables Is a character string surrounded by angle brackets. For example, < foo>,
<z> and <this-is-a-variable> are all valld query meta-variables. Such vari-
ables may be contained In a box and are bound to a set of program objects of the
type represented by that box. The eflective binding of a query meta-variable is
the intersection of the sets generated by its several uses ln a query.

-25-

e i I T P N N U S P S -,-4‘,‘,-,";‘4-A‘ux‘..

.
At 4

|-
:

|21

1

)

A RS i et (e A Aed At R4S I S S o darparenag —— Pl A s S 2 s 2 S e e i o

PRL Picture Language: PRL/PL Section 2

Meta-variables are generally Introduced into a query to designate the same
object as It appears In more than one context. For example, figure 17 illustrates
the query, “Find all FUNCTIONS that USE a VARIABLE before SETTING that
VARIABLE." Note that the meta-variable <z> appears In two places In the
query, and is meant to refer to the same object. In this case, <<z> represents a

variable that Is first used and then set.

FUNCTION

USES
VARIABLE

<X >

SETS ¢

VARIABLE

< X >

Figure 17: FIND THOSE FUNCTIONS THAT USE SOME VARIABLE BEFORE
SETTING THAT VARIABLE

-26-

. - . . e
e, . P - e a A Wa & e . alaoALallala N VNS W

-"\

X SO WAV WAY: SN

., .
UL Ly ST

ooad 2’

PG S PN STERTY

Y T

-

PRy

W LY

LT tam - S L B At A it i 1k e . ~
r - . BN PN s T T T LY TR I AT Y T TR T A e e e - vj

’ PRL Picture Language: PRL/PL Section 2 . j

l Actually, the query In figure 17 does not accomplish what was probably
intended: checking for any use of a variable before it recelves an initial value.
Figure 18 accurately captures the intended meaning and illustrates the use of
negation in combination with the precedence relation. Flgure 18 translates as 4
“Find the FUNCTIONS that do not SET a VARIABLE before USING that -'_'._j
VARIABLE.” Agaln note that <z> Is used twice In the query and Is intended ;

to refer to the same variable name. R

FUNCTION

. SETS o

u USES ¢ ‘ ' .}

VARIABLE]

.

.1

< X> S

°_

IR

- o]
¢

) Figure 18: FIND THOSE FUNCTIONS IN WHICH A VARIABLE IS NOT SET
BEFORE THAT VARIABLE IS USED ®

A “."'. o _

vy
s e
aad A4

-27-

4

Figure 18 makes use of many of the features of the PRL/PL and still
manages to malntain a high degree of comprehenslbility. However, as illustrated

by the example in figure 17, PRL/PL offers no protection against sloppy thinking.

-28-

- - e
b “ » - - . " " . . N - .
Y L o P L, OGP N S, W) - oL . s N et D
i ol - PRI U

a_a s PR IEILES

r*_- Al vy % -y it B AdBaSiEnd Sad A At AR et S e A B B - At I et s Sate it B Jhete. Mt st e J Ealir it Attt it et e Sttt S Pl o
) . . o
PRL Picture Language: PRL/PL Section 2 L

T p— = —— Ml e s o w
e e T ~ 7 N AN A Sl S N T TNy

Formal Query Language: PRL/FL Section 3

3. FORMAL QUERY LANGUAGE: PRL/FL

The PRL Formal Language Is intended to serve as an Internal form for PRL
queries. It should be both unambiguous and suitable for machine interpretation.
It Is possible that in the future there will be other external forms of the PRL in
addition to the Picture Language. At such time, the Formal Language would
serve as the common underlying representation. Since the PRL/PL may become
cumbersome or counter-intuitive for some complex requests, the Issue of a

Natural Language Interface may be considered in the future.

The current syntax of the PRL/FL Is presented in BNF form in figure 19.
This particular rendition ts presented in preflx operator form and makes use of

some rather long-winded keywords; it 1s st!ll under development.

The least satlsfactory aspect of this specification for the PRL/FL s its han-
dling of precedence relations. The problem is that a precedence graph which is
only constralned to be non-cyclic Is transformed into a set of (possibly nested)
binary relations. This may force some of the terms to be dupllcated. We would
like the PRL to keep track of the fact that such duplicatlons are merely artifacts
of the translation; it should create some sharable structure to represent the dupli-

cated sub-querles.

-29-

= e S L SPNRAP L SP RPN Y ¥ U IV WP W SO R U T NSO A S S

C o a e . A

| " il ! AN d bt AP " M A e 2 DM i Sl A S Sl S Ml Ank tadl Sl A Al fadh/ Sk adl g br i vf:qvﬂ‘
’ Formal Query Language: PRL/FL Section 3 o
L
r Y
QUERY = RETURN | CONTAINMENT | NEGATION
DISJUNTION | CONJUNCTION y
?‘ RETURN = (RETURN CONTAINMENT) ¢ f
) CONTAINMENT = (coNTAINS OBJECT CONTAINABLE) Q
= NEGATION = (NOT CONTAINMENT) f
DISJUNCTION = (0R QUERY®) * :
CONJUNCTION = (AND QUERY* ORDERING*) 'j
, ORDERING = (PRECEDES QUERY QUERY) "'}i
. (PRECEDES QUERY ORDERING) °
(PRECEDES ORDERING QUERY) 1
(PRECEDES ORDERING ORDERING) '
CONTAINABLE = NIL | STRING | VARIABLE | QUERY ',‘ii
[] OBJECT = (TYPE REPRESENTATION QUANTIZATION) ° A
REPRESENTATION = TEXT | SYNTAX | VARIABLE | QUERY -
| QUANTIFICATION = EXISTENTIAL | UNIVERSAL | CARDINALITY ;gfu
) | CARDINALITY = A SET OF NONNEGATIVE INTEGERS OR RANGES OF '.A
NONNEGATIVE INTEGERS S
TYPE = ANY VALID TYPE OF PROGRAM OBJECT KNOWN TO
THE EPM (CONSISTENT WITH THE STATED
REPRESENTATION
®
NIL = AN EMPTY MARKER FOR BOXES WHICH ARE NOT c
CONSTRAINED TO CONTAIN ANYTHING o
VARIABLE = < STRING > T
STRING = QOH COME ON! °]
) °
Figure 19: PRL/FL: BNF SPECIFICATION]
, -30- "
_ : . = . N N AJ

—r———Y —t
- - » - Mt 3 T Lt Ay e ™ T PR Ao) S0 IS A S 0 e vile Thie S S T N

Formal Query Language: PRL/FL Section 3

The open lssues mentloned eariler in the discusslon of the PRL/PL are
really PRL/FL conslderations. We know how we want the plctures to appear for
all cases of combinations of quantificatlon and negation. We know how they
should be translated into the Formal Language. The open questl’ons have to do

with the interpretation of such queries. This Is the province of the interpreter of

the PRL/FL.

The mapping between the PRL/PL and PRL/FL Is falrly straightforward.
We already have a prototype unparser working which can take PRL/FL querles
and draw the appropriate pictures. The parser, which will map from pictures to

formal representation, will be part of the PRL/PL Editor Interface.

-31-

-,
ol il et onda

LA S LT T Y T T T A R T L T T ———— a

P

PRL/PL Editor Interface Section 4

4. PRL/PL EDITOR INTERFACE

As Important as the PRL/PL Is the means by which a user enters and
manipulates those queries. We are currently developing a prototype Interface for
the language. The Interface is a graphical-style editor, with the characteristics of

a syntax-oriented editor; i.e., it knows about the PL. and ensures that requests are

syntactically legal.

Given such a syntax editor for PRL/PL querles, the user can at all times
see the whole evolving query as It Is belng composed and be certain that the
query Is syntactically valld. The query editor will take care of such layout issues
as scaling the boxes appropriately and positioning the boxes when precedence

relations are specified.

The prototype system Is being developed on a Symbolics 3600 Lisp
Machine, which has a high-resolution bit-mapped display terminal and mouse-
input support. For each representation In the EPM, there will be a set of object
types which may be Instantiated as boxes and used in queries. As an alternative
to typing in the name of the type of box to be instantiated, a complete catalog of
types will be available on a set of mouse-sensitive menus, As a simple extension,
the user may also malntain a library of previously constructed querles and
query-fragments, The contents of this library will also be avallable on a mouse-
sensitive menu, With this facllity, commonly used querles or pleces of querles

will always be casily avallable.

-32-

PO T T T T T TR T T Y T Y e e TR Y T T, TR —~w v ~ TV TS T Y T WY T e w W Ty w =
- h . . '_01
. “

’ PRL/PL Editor Interface Section 4 e

ISR R S SN

z Most of the operations required to specify PRL/PL querles will benefit from
the ability of a mouse to quickly designate a position on the screen. Placement |

of boxes In other boxes Is natural with the mouse and easily transformable into

[Sy N

the corresponding PRL/FL statement. Similarly, selecting a box for negatlon or
as a return object is quickly accomplished and easily mapped to the formal

representation. Speclfication of precedence relations works just as smoothly with

PP VP N

- a mouse.
.
Note that only boxes representing program objects will be displayed 1
R negated; AND and OR boxes when negated will be transformed into the]
®
equlvalent positive statement through application of DeMorgan’s Law. Also note)
that boxes which have been designated as return objects cannot be negated and .
' that negated boxes cannot be selected as the query result.
@
]
3
1 i
. g
1
4
. 4}
)
. -
4
-1
' °
o
. SR
o
33]
- - C
’ °

L-_"_'., P S S - A A » Lo . - . EERN . - - - 4

B e remt et R e i~ e A e i A e e R e e e gt R

R

g

Plans for Further Development Section 5

5. PLANS FOR FURTHER DEVELOPMENT

5.1 QUESTIONS/ISSUES

There are several representation issues that still must be addressed. One of
these involves the meaning of containment, which can be fuzzy and may vary
with the types of objects. While it is clear what it means for one syntactic struc-
ture to contain another, it is less clear when considering more complex database
structures. When searching for structures contalning a cliche, the object may be
distributed over several parts of a program. In this case, it may make sense to

interpret containment only to require some overlap.

A problem in the PRL/PL involves the representation of multiple objects.
When multiple objects are contained in some enclosing object, they can be con-
nected into an arbltrary precedence graph by specifving directional arrows
between any two boxes. Of course it Is very easy to draw graphs that represent
unsatisflable conditions, as shown in figure 20. The system should be able to

deteet such configurations and bring them to the user’s attention.

-34-

ey

el ik

TN —"y

Plans for Further Development Section 5

FUNCTION

LOOP

IF-STATEMENT | |

Figure 20: AN UNSATISFIABLE PRECEDENCE GRAPH

We are not satisfled that we have completely determined the correct
interpretation for all possible combinations of quantifiers and cardinality. In par-
ticular, we do not yet feel comfortable with the Interaction of these features with
negation. On the whole, though, the default cases seem to work well to express
useful queries. Improving our understanding of the underlying logic is one prob-

lem area to which we will be devoting more effort in the coming year.

-35-

. I
PO RO PO

i e

. adeda

Ty SRATA SLAT S SmE S AR .. REaA N AP S A A LN S g SRR P et Aol A i SR A S S AR St]
- ., e

o Plans for Further Development Section § K

5.2 FUTURE WORK

Part of our effort during the next year will be almed at addressing the]
unresolved Issues in the speclfication of the PRL/PL and the PRL/FL. Work will
- continue on the process of translating search requests In the PRL/FL to search o
. requests In the EPM. In conjunction with this, we will begin looking at the Issues :
of efficiently processing querles; part of this effort will be to reflne the EPM
search methods. An additional task will be to examine the problems Involved in)
updating the internal database during a user’'s editing sesslon. We will try to
develop a strategy which allows for updates to the database only when necessary
- so that an unreasonable amount of time iIs not spent propagating changes. We ®

will also continue the study of alternate interface forms.

]

p. °
]
o

°
]
N _'
. -
8
41
.
9
° ® |
_*|
- -J

-36-
1 °

B NI 2 2as am a4

O Jaet S e e ana

AR s aa e et at ttied Bl beaind s Wi i d el ot S A g- B h Ak Bl E S A A g0 SR AR ACA £ At AN SN SMAGPIA A S A SR SN AP

Personnel Section 6

6. PERSONNEL

6.1 PERSONNEL

The Program Reference Language (PRL) research project is belng per-
formed within the User Alds Program of AI&DS, with Dr. Brlan P. McCune, Pro-
gram Manager, as Principal Investigator. Other members of the AI&DS technlcal
staff who have contributed to the project Include Jeflrey S. Dean, Eric A.

Domeshek, Michael A. Brzustowlez, Danlel G. Shapliro, and Susan G. Rosenbaum.

Dr. Brian P. McCune Is the Principal Investigator of the PRL project. He
recelved his Ph.D. in Computer Science from Stanford University In 1979; the
title of his thesis was "Building Program Models Incrementally from Informal
Descriptions.” During the past decade, Dr. McCune has done research in the
areas of artificlal intelligence, software systems, and computer architecture, with
emphasis on artificial intelligence approaches to software development and
malintenance, information retrieval, database management, hypothesls formation,
planning, and distributed processing. He has been the princlpal Investigator of
research projects to select and design candidate AI tools for assisting In the
maintenance of Ada programs (sponsored by Rome Air Development Center), to
design an intelligent program editor for Ada, to determine the feasibility of
automatically generating operating systems, and to deslgn and implement a
knowledge-based system for textual Information retrleval. Dr. McCune s on the

-

-37-

S el al e NP B e 2 Y "

g
AR B

R
PRI SR

o1 . .
PUMNENGY SN UV S R

'@
_". N

'@

| 2

.............

Personnel Section 6

Editorial Advisory Boards of Defense Electronics and The Artificial Intelligence
Report. He has been Invited to discuss the application of artificlal intelligence to

defense problems numerous times, both at workshops and in published papers.

Jeffrey S. Dean s project leader of the PRL project. He Is also currently
leading the related Intelligent Program Editor project, and was previously the
leader of the AI&DS Software Malntenance Project, which deflned advanced Ada
tools for software maintenance. He recelved his Masters degree in Computer
Science/Computer Engineering from Stanford University, where he worked on the
automatic derivation of operating systems. His mailn research interest is the
application of AI to software tools. He came to AI&DS in January 1981 from
Bell Telephone Laboratorles, where he was Involved in the development and

maintenance of the UNIX operating system and its utllities.

Daniel G. Shapiro has been contributing to the PRL project since Joining
AI&DS In October 1981, after recelving a Masters degree In Electrical Engineer-
ing and Computer Science from the Massachusetts Institute of Technology. His
research Iinterests Include artificlal Intelligence, expert systems, and software
engineering. At AI&DS he has done work on expert systems for program and
documentation editing, Information retrieval, and mission planning. Currently,
he is the leader of the Battlefleld Commander's Assistant project, a baslic research
effort almed at developing the AI technology required to assist battallon and/or
brigade commanders in planning and evaluating tactics for combat situations.
His masters thesls, entitled "Sniffer: A System that Understands Bugs,” involved
the design and Implementation of a semantics-based debugger for the
Programmer’'s Apprentice project at the MIT Artlficial Intelligence Laboratory.

-38-

N Y T W TR T T T T T N T S W R T W T X A v v Y v UYL w v v

a1 e

‘e a4 .2 A i _ 4

P T

DR FAS Sal S e

l¢

RN S S Sl Pt Pl At Sl L St St e S - e g LV A A el Sl S A i A " (iAo At Auh AP S S SEu ate 0% & ores s g |

Personnel Section 8

He also taught software engineering courses at MIT.

Eric A. Domeshek was responsible for much of the PRL experiment which
studled how people think about programs and has played a key role in the
development of the PRL Picture Language. Mr. Domeshek received an A.B. in
Physics from Harvard College. His course work also emphasised computer sclence
and cognitive sclence. His technlcal interests are in artificial intelligence, particu-

larly knowledge representation, and computer graphics.

Michael A. Brzustowicz has been involved with the PRL project since Join-
ing AI&DS In November 1983. He recelved an S.B. degree in Physics from the
Massachusetts Institute of Technology in 1979 and recelved his M.S.E.E. in Com-
puter Engineering from Carnegie-Mellon University in 1980; his thesis work was
entitled "A System for the Implementation of Models of Reasoning with Uncer-
tain Data.” Mr. Brzustowicz's current areas of interest include artificlal intelli-
gence, software engineering, ergonomic user Iinterfaces, and computer-alded
processes. Prior to joining AI&DS, Mr. Brzustowicz worked for the Development
Systems Software Group of the Semiconductor Dlvislon of Texas Instruments,

and for the Unix Development Group at Bell Laboratories.

Susan G. Rosenbaum has been working with the PRL project since jolning
AI&DS in June 1984. Her areas of Interest incilude software engineering, artificial
Intelligence, and man-machine interfaces. She recelved a B.A. degree In
Mathematics from the Unilversity of Texas at Austin In 1974 and an M.S. degree
In Computer Science from the Unlversity of Texas at Arlington in 1979. Prior to
Joining AI& DS, she worked at ComputerxThought Corporation on the deslgn and

-39-

-
PN VP

..
Aafalo

.

* l’r i
PN I ST |

Lol BRI AR e ne e R A S S 1 B R S 4 el 4 AL S el Sad AR IS g gt oNe SRS muw-adid- dnme e e

Personnel Section 6

development of a prototype tutoring system for the Ada language and at Texas

Instruments in the Computer Science Laboratory.

6.2 INTERACTIONS

Dr. Brian P. McCune Is an Assoclate Editor of The Al Magazine, the publi-
cation of the American Assoclation for Artificial Intelligence. He is on the Edi-

torlal Advisory Board of Defense Electronics and also The Artificial Intelligence

Report.

Dr. McCune presented a paper on an Intelligent Program Editor at a
Software Engineering Technology Review sponsored by the Navy (July 1984). He
was an Invited speaker to COMPSAC '83 (November 1983) and EASCON '83
(September 1983), and was an invited participant to Knowledge Based Software
Assistant Workshop at AAAI-83 (August 1983). He attended the NAVAIR/ONR
Aviation Software Workshop (October 1983), the DARPA Formalized Software
Development Workshop (November 1983), the Conference on Inference Theory

and Al (November 1982), and the Software Maintenance Workshop (December

1983).

Dr. McCune attended the Eighth International Jolnt Conference on
Artificial Intelligence (IJCAI-83), held In Karlsruhe, Germany, In August 1983
and the Natlonal Conference on Artificlal Intelligence (AAAI-83), Washington

D.C., August 1983.

-40-

v
P Ny

S
f.
[SR |

a

RN A T i i e i R e o o Sadr1 Lt ety

Personnel Section 6

Dr. McCune has been Interfacing heavily with both operational and
developmental commands in the Air Force and elsewhere In DoD and Industry in
order to understand current and future problems of software development and
maintenance. Within the Air Force, Dr. McCune has met with personnel at the
Alr Force Office of Sclentific Research, Rome Alr Development Center, Wright
Aeronautical Laboratories, Forelgn Technology Divislon, Strategic Alr Command
headquarters, Alr Force Communlication: Computer Programming Center, and
Air Force Satellite Control Facility. Elsewhere in DoD he has talked with the
Defense Intelligence Agency, Office of the Undersecretary of Defense for Research
and Engineering, Defense Advanced Research Projects Agency, DoD STARS Pro-
gram, Ada Joint Program Office, Office of Naval Research, Naval Electronlcs Sys-
tems Command, Naval Sea Systems Command, Naval Intelligence Command,
Naval Research Laboratory, Naval Ocean Systems Center, Naval Intelligence
Center, Naval Weapons Center, Army Research Office, Army Center for Tactical

Computer Systems, and Army Ballistic Misslle Defense Advanced Technology

Center.

Dr. McCune has also visited numerous unliversities and research centers to
assess the state of the art In automatle programming at first hand. Places visited
include Harvard Unlversity, Massachusetts Institute of Technology, Carnegle-
Mellon Unlversity, Duke Unlversity, Unlversity of California at Irvine, and Stan-

ford Unlversity.

Jeffrey S. Dean presented a paper on an Automated Tool for Software
Documentation at a Software Engineering Technology Review sponsored by the
Navy (July 1984) He gave a paper on a study of software malintenance at the

-41-

e Ty T TR L WYY v e yw

U By

Y

: ¢ . ’
. o l .
Ao A bkt F

[e sk o i A e ke e S e e e esus s s e JretacieL gt A LAl UA S AT A DA I i aae e S0 e dn e) B ATE A1 0 8 At a0 0 0 4 AR

Personnel Section 6

Software Malintenance Workshop (December 1983). He attended the 7th Interna-
tional Conference on Software Engineering (March 1984); the Symposlum for
Application and Assessment of Automated Tools for Software Development

(November 1983) and AAAI-83.

Daniel G. Shaplro was a panelist at the ACM SIGSOFT/SIGPLAN
- Software Engineering Symposium on High-Level Debugging, held in Pacific
Grove, California, in March 1983. He presented papers on the PRL at the IEEE
Trends and Applicatlons Conference (May 1983) and the Seventh International
Conference on Software Engineering (March 1984). He presented papers on infor-

mation retrieval at AAAI-83 and IJCAI-83.

' Eric A. Domeshek attended the Symposium for Application and Assessment

of Automated Tools for Software Development (November 1983) and AAAI-83.

Michael A. Brzustowicz attended the Symposium for Application and

Assessment of Automated Tools for Software Development (November 1983).

Susan G. Rosenbaum attended the ACM Conference on Lisp and Func-
tional Programming (August 1982) and the National AdaTEC Conference

(October 1983).

-42-

L P PP U D S G, ", T I I et it PP P S i A TR RN VU o ST SO S Y SR, W Iy ST

. o 7o .
L e
e m e

fa el

|
-

- .
Lx- T

r\" FoAte Al o e 2an e - DR AL S tetoag o A S IR AR AN S M g aa e e st ie e e e s e

Personnel Section 6

6.3 PUBLICATIONS

Members of PRL project stafl have published a number of papers. A cumu-
lative chronological list of publications appearing In technical Journals and

conference proceedings Is listed below:

Thomas L. Adams, Andrew S. Cromarty, Brian P. McCune, Gerald A. Wilson,
Milton R. Grinberg, James F. Cunningham, and Carl J. Tollander, “A
Knowledge-Based System for Analyzing Radar Systems,” invited paper,
Proceedings, Military Microwaves '84, London, England, October 1984.

Danlel G. Shapiro, Jeffrey S. Dean, and Brian P. McCune, ‘A Knowledge
Base for Supporting an Intelligent Program Editor,”” 7th International
Conference on Software Englineering, March 1984. (See Appendix A.)

Andrew S. Cromarty, Daniel G. Shapiro and Michael R. Fehling, *‘Still
Planners Run Deep: Shallow Reasoning for Fast Replanning,’” Proceedings,
Society of Photo-Optical Instrumentation Engineers, Technical Symposium
East, 1984, to appear.

Jeffrey S. Dean and Brian P. McCune, ‘“An Informal Study of Software
Maintenance Problems,’’ Proceedings, Software Maintenance Workshop,
December 1983. (See Appendix B.)

Brian P. McCune and Jeffrey S. Dean, ‘“Trends for Advanced Software
Tools,” Defense Science 2001+ (reprint of EASCON '83 paper),
December 1983.

Brian P. McCune, Richard M. Tong, Jeffrey S. Dean, and Danlel G.
Shapiro, “RUBRIC: A System for Rule-Based Information Retrieval,”
Proceedings, COMPSAC 1983, November 1983.

Brian P. McCune and Jeffrey S. Dean, *‘Trends for Advanced Software
Tools,” Invited paper, Proceedings, EASCON °'83, September 1983.
(See Appendix C.)

Richard M. Tong, Danlel G. Shapiro, Brian P. McCune, and Jeffrey S.
Dean, ““A Rule-Based Approach to Information Retrieval: Some Results and
Comments,’’ Proceedings, National Conference on Artificlal Intelligence,
Washington, D.C., August 1983.

Richard M. Tong, Danlel G. Shapiro, Jeffrey S. Dean, and Brlan P.
McCune, “A Comparlson of Uncertainty Calcull in an Expert System for
Information Retrieval,”” Elghth International Joint Conference on
Artificial Intelligence, Karlsruhe, West Germany, August 1983.

Brlan P. McCune and Robert J. Drazovich, “*“Radar with Sight and
Knowledge," Invited paper, Defense Electronics, August 1983,

-43-

. PP A Py - S
e S B PSS S SR SR NS VAP R T atam DAL WY

I3 R
» .
o »
. PRI
P PR f—
O v P
o & SRS L AR T

[4

Bl T e .
. ! . . r3
: . Tt . -’ 1. v
4. .'L4'A"'4_¢J

. Y,

f
)

- Y

e

PR R R . LA R i i’ S et -
A Soll Ted i Fad il s LA AT At A Sl i A A S S A Ad i Acia a st s oA e e e e oy

Personnel Section 6

Richard M. Tong and Danlel G. Shapiro, ‘“‘An Experiment with Multiple
Valued Logles in an Expert System,’’ Proceedings of the IFAC Symposium on
Fuzzy Information, Knowledge Representation and Decision Analysls,
Marsellle, France, July 1983.

Daniel G. Shapiro and Brian P. McCune, *“The Intelligent Program Editor:
A Knowledge-Based System for Supporting Program and Documentation
Maintenance,’ Proceedings of the Trends and Applications Conference of
the IEEE, May 1983.

Gerald Wlison, Eric A. Domeshek, Ellen L. Drascher, and Jeflrey S. Dean,
“The Multipurpose Presentation System,’ Proceedings, Very Large Data
Base Conference, 1983.

Jeffrey S. Dean and Brlan P. McCune, **‘Advanced Tools for Software
Maintenance'’, Rome Alr Development Center, RADC-TR-82-313, December

1982,

Brian P. McCune, Jeffrey S. Dean, Danlel G. Shapiro, and Rlchard M.
Tong, ‘“‘Rule-Based Information Retrleval,” Workshop on Intelligence
Applications of Advanced Computer and Information Technology: Focus on
Artificial Intelligence, Office of Research and Development, Office

of Scientific and Weapons Research, Central Intelligence Agency,
Washington, D.C., November 1982.

Robert J. Drazovich, Brian P. McCune, and J. Roland Payne, ‘‘Artificlal
Intelligence: An Emerging Military Technology,” invited paper,
Conference Record, EASCON ’82: Fifteenth Annual Electronics and
Aerospace Systems Conference, Institute of Electrical and Electronics
Engineers, Inc., Washington, D.C., September 1982, Pages 341-348.

Brian P. McCune, editor, ‘Al at AI&ZDS,” The Al Magazine, Volume 2,
Number 2, Summer 1981, pages 44-47.

Daniel G. Shapiro, “‘Sniffer: A System that Understands Bugs,"’
MIT/AIM/838, June 1981.

Brian P. McCune, “‘Incremental, Informal Program Acquisition,”
Proceedings of the First Annual National Conference on Artificial
Intelligence, Stanford University, Stanford, California, August 1980,
pages 71-73.

Danlel G. Shapiro, ‘A Proposal for Sniffer, A System that Understands
Bugs,”” MIT/Al Working Paper 202, July 1980.

Cordell Green, Richard P. Gabriel, Elaine Kant, Beverly 1. Kedzlerskl,
Brian P. McCune, Jorge V. Phillips, Steve T. Tappel, and Stephen J.
Westfold, ‘“‘Results in Knowledge-Based Program Synthests,” IJCAI-79:
Proceedings of the Sizth International Joint Conference on Artificial
Intelligence, Volume 1, Computer Sclence Department, Stanford
Unlversity, Stanford, California, August 1979, pages 342-344.

-44-

PP |

2

R e e i S e S e e T T e T T L

Personnel Section 6

George R. Lewis, J. Shirley Henry, and Brian P. McCune, ‘“The BTI 8000:
Homogeneous, General-Purpose Multiprocessing,” In Richard E. Merwin,
editor, 1979 Natlonal Computer Conference, AFIPS Conference
Proceedings, Volume 48, AFIPS Press, Montvale, New Jersey, June 1979,
pages 513-528.

-~
Cordell Green and Brian P. McCune, ‘‘Knowledge-Based Programming
Applications,” Applications of Image Understanding and Spatial
Processing to Radar Signals for Automatic Ship Classification:
Proceedings of a Workshop, Naval Electronlc Systems Command,
Washington, D.C., February 1979, pages 94-99.

Cordell Green and Brlan P. McCune, “‘Application of Knowledge-Based
Programming to Signal Understanding Systems,’ Distributed Sensor
Nets: Proceedings of a Workshop, Computer Sclence Department,
Carnegle-Mellon University, Pittsburgh, Pennsylvania, December 1978,
pages 115-118.

Brian P. McCune, ‘‘The PSI Program Model Bullder: Synthesis of Very
High-Level Programs,' Proceedings of the Symposium on Artificial
Intelligence and Programming Languages, SIGPLAN Notices, Volume 12,
Number 8, SIGART Newsletter, Number 64, August 1977, pages

130-139.

-45-

- N . .
. - et al T

)

-f.'j

LA A ara e

References Section 7

7. REFERENCES

. Domeshek, Eric A., Shapiro, Danlel G., Dean, Jeffrey S., McCune, Brlan

P., “An Informal Study of Program Comprehension’’, Al1&DS TM-1014-
3, March, 1984.

. Shapiro, Danlel G., “‘Sniffer: A System that Understands Bugs’, AIM-

638, Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1981.

. Shapiro, Danlel G., McCune, Brian P., “‘Searching a Knowledge Base of

Programs and Documentation’’, AI&DS TM-1014-2, January 1983.

. Shapiro, Daniel G., McCune, Brlan P., “A Knowledge Based System for

Supporting Program and Documentation Malintenance’’, Proceedings,
IEEE Trends and Applications, 1983, pp. 226-232.

. Shapiro, Danlel G., Dean, Jeffrey S., and McCune, Brlan P., “A

Knowledge Base for Supporting an Intelligent Program Editor',
Proceedings, 7th International Conference on Software Englineering,

1984.

. Zloof, M. M., “System for Business Automation,” Communications of

the ACM, 1977. Vol 20, No. 6. pp. 385-396.

-46-

poy }

Bkl

S

PPN

| SR ISR I I R A G, Sl S M S e T ~ —~ B A DA S o e e A S e
e .)
Appendix A .
¢ e
APPENDIX A. g
- o
This appendix contains a reprint of the paper "A Knowledge Base for
Supporting an Intelligent Program Editor,” by Danlel G. Shapiro, Jeffrey S. A
Dean, and Brian P. McCune. o]
— '_ A
®
4
" 4
. <4
K e
» °
' 1
4
°_
. -
-3
-
]
. °
1
-47-
° 7 °
A
r -
r— A P Ry A W S W DS DI r ‘n.'A_'L'v‘" A lon o -‘l

Bt ndh

- v
AP AR Aune Dt & on B B Bue -RenCnite-Rile M Rt Shile “RAa SR Ch AN et N ~

w

[Seventh International Conference on %

oftware Engineering, March 1984.]
6

A XNOWLEIGE BASE FOR SUPPORTING AN INTELLIGEN: .ROGRAM EDITOR

Daniel GC. Shapiro
Jeffrey S. Dean
Brian P. McCune

Advanced Information & Decision Syetems
201 San Antonio Circle
Mountain View, CA 94040

ABSTRACT

This paper presents work in progress towards a
program developmeant and maintenance aid called the
Intelligent Program Editor (IPE), which applies
artificial intelligence techniques to the task of
manipulating and analyzing programe. The IPE is a
knowledge based tool: it gains its power by expli-
citly representing textual, syntactic, and many of
the semsutic (meaning related) and pragmatic
(application oriented) structures in programs. To
demonstrate this approach, we implement a subset of
this knowledge base, and a search mechanism called
the Progrsm Reference Language (PEL), which is able
to locate portions of programs based on & descrip-
tion provided by s user.

This research was supported by the Air Force Office
of Scientific Research uader countract F49620-81-C~
0067, the Office of Naval Research wunder contract
N00014-82-C-0119, and Rome Air Development Center
uader contract F30602-80-C~0176.

1. XNTRODUCTIOR

The effort and expense involved in software
maiatensnce have been recognized as a major limita-
tion oo the capabilities of current seoftware sys-
tems. In a study on software maintenance issues in

the Air Force. we f€found that the process of
comprehending the torm and fuanction of existing

softvare (i.e., vhat it does and hov it does it) is
the largest task in the maintenance process [2].

The basic cause of this "comprehensjon prob-
lem" is the loss of knowledge during the program-
ming process, caused by factors such as poorly
vritten software, inadequate documentation, pro-
grammer forgetfulness, and personnel turnover. To
address these issues, ve have started a project to
develop intelligent, knowledge-based programming
aids, designed to help the progremmer overcome lim-
itations of more traditional tools. This paper
describes the initiasl phase of one of these tools,
sn editor known as the Intelligent Program Edjtor
(IPE). The following sections discuss the motiva-
tion behind intelligent editing, the design of an
intelligent editor, a database for the editor, and
a scenario demonstratiaog an actual implementation
of & portion of the IPE’s databsse, used in the

context of u program search.

2. HOTIVATION

An intelligent editing system is & sophisti-
cated tool for developing and maintaining programs.
The goal, insofar as it is possible, is to decrease
the amount of information a programmer needs to
supply in order to create and maintain a program,
and to simultaneously increase the reliability of
the resulting code. This can be accomplished by
incorperating knowledge about the structure and
intention of programs into the editing tools wused
to develop and maintain them. Perhaps the best way
to illustrate this approach 1is to present an
allegory having to do with the production of a
technical manuscript.

Assume that there is a manuscript which needs
to be typed for publication. If it is given to a
typist vho does not speak English, the result would
be, at best, a word-for-word copy of the original
manuscript. If it is given to an English-speaking
typist, simple errors, such as misspellings and
punctuation problems, might be fixed during the
typing process. If the manuscript is given to an
English teacher moonlighting as a typist, the
result might well be a version in which the prose
is smoothed and otherwise improved, Finally, if
one is lucky enough to find a typist familiar with
the domain of discourse (such as the author), the
resulting document wmight even have factual errors
corrected and incomplete thoughts identified.

A programmer selecting an editor system for
writing code is in a similar situation. A standard
text editor is comparable to the non-English-
speaking typist; text appears exactly as it is
typed, with no enhancements. The English-speaking
typist could be compared to a syntax-oriented edi-
tor, which can eliminate syntactic program errors
and misspelled keywords. The Eanglish
teacher/typist knows about the language itself but
not about the content of the thoughte. This situa-
tion 1is comparable to a programming language-
specific editor which applies knowledge about the
domain of programming; this editor can instantiate
general programming techniques, catch certain types
of semantic errors, make style suggestions, and
improve the overall flow of the program. The
technical typist who understands the content of
what is being said is analogous to an editor that

‘

'
i
[
Aaa s ad

!
P
|
e

.
4
P
.
.
aat d b

. @
- 4
q
]
r
®;
4
[
4
[
1
o

2

S s sies Lo sevbiasai ad e et aVel SR L APELAPHL saR S AP AT I S Y A A,

utilizes knowledge about the application domain; it
can help in algorithm development and can catch
certain types of pragmatic errors which are depen-
dent upon the specific application domain.

). THE INTELLICENT PROGRAM EDITOR

The Intelligent Program Editor (IPE) described
in this paper most closely corresponds to the
English teacher/typist mentioned above, in that it
will support textual and syatactic manipulations,
and have the ability to assist in the implementa-
tion of typical programming actions. This power is
obtained through the use of a database that expli-
citly represeate the fuanctional organization of
programs in terms of textual, syotactic, and
intention-oriented structures. With this database,
the IPE is in a position to become more of a pro-
gramming enviromment than solely an editing tool.
In this vein, ve are interested in addressing the
follovwing design goals [5].

The IPE should provide s means for naturally
incorporating documentation into the program
development process. In our view, this requires
the ability to link documentation into the organi-
zational structure of a oproeram (similar to
Nelson’s {3] concept of Hypertext), and the ability
to actively use any information that is eupplied
(to provide programmers with a wmotivation for
including descriptive data). In the IPE, documen-
tation will provide input to a program search
facility.

The system should support incremental program
analysis. The object here is to employ the
system’s understanding of program structure to
catch syntactic an4 certain semantic errors prior
to execution. Examples include ideatifying wvari-
ables that are accessed before being set (via data
flow analysis) and detecting programming cliches
that have been incompletely implemented. There is
aleo a role for error prevention: some editors
(e.g., [(6)) prevent syntactic errors from ever
occurring.

The IPE will allow the user to employ alter-
nate program visualizations. This weans allowing
the programmer to examine or modify code through
say of the representations mentioned above. For
example, a eyntax based approach might be appropri-
ate during program construction, while a graphical
data flov display may be useful within the debug-
ging process.

All of these capabilities require the wuse of
multiple program representations, as well as
mechanisms for searching and manipulating the
information they contain. Therefore, in the first
phase of the IPE project, we constructed a proto-
type version of this program database, called the
Extended Progrsm Model (EPM), and demonstrated it
ia the context of program search. The remainder of
this paper discusses the EPM and the search example
that was produced.

[U PP DA NS R W

2 of 6

4. THE EXTENDED PROGRAM MODEL

The Extended Program Model (EPM) provides a
new way of representing sand accessing programs by
defining a vocabulary for discussing programs which
uses terms that are much closer to the ones which
users naturally employ. The EPM provides this
capability through the use of & database that
represents the structure of programs from a variety
of views. The EPM can form the backbone for a
number of systems which exhibit a deep wunderstand-
ing of the organizational structure and meaning of
code.

The EPM is constructed in terms of two major
subsystems (see Figure 1) : a program structures
database and a search and update component called
the Program Reference Language, which provides
access to the database. In addition, the EPM will
contain a library of '"rational form" constraints
that will monitor program composition for its
structure and intentional content. As a whole, the
system can be thought of as a database management
system for creating and maintaining code. It pro-
vides a search language for accessing its
knowledge, a facility for performing updates, as
well as & set of semantic integrity and consistency
constraints for monitoring the validity of the data
it contaians.

EPH

SEARCH

(PRL) MANIPULATION

PROGRAM STRUCTURES

DATA BASE

SEMANTIC INTEGRITY
& CONSISTENCY CONSTRAINTS

Figure 1. The Extended Program Model

4.1 THE PROGRAM STRUCTURES DATA BASE

The EPM°s program structures database 1s con-
structed in cterms of 8 collection of representa-
tions which reflect the transition from s syntactic
to a more intention-oriented analysis of code (Fig-
ure 2). We are considering these viewpoints to be
abstract data types which facilitate different
sorts of retrieval operations.

. —
N
- @
{
L
g
<
<
®
|
4
4
®
oY
®
b
g 1
]
4
1
<
®
]
®
-4
T
R
q
.<
]
PP |

va

DOCUMENTATION

INTENTIONAL AGGREGATES

TIPICAL PROGRAIMING PATTCRNS
(cLicnes)

SEGMENTED PARSE

CONTROL & OATA LOM

SYNTAX

TEXT
Figure 2. Representation Levels in the EPM

The ctextual representstion gives the EPM the
viev that most text editors provide. It is a low-
level approach, concerned with words and delim-
iters, but it sllows for important textual search
operations.

The syntactic viewpoint embodies the rules of
grammar for particular programming languages. The
syntactic database provides the EPM with & vocabu-
lary for programming constructs such as "for"
loops, parameters, and procedures.

The next level of rvepresentation is the flow
level, which provides <ctandard date end control
flow information. 1t provides a vocabulary relat-
ing to the logical structure of programs.

The segmented parse represeatation defines a
vocabulary for a program in terms of ite component
data and control flow. For example, iterations are
decomposed into a set of roles which identify the
subfuactions of a loop. ln the breakdown we are
using, loops contain generators, filters, termina-
tors, and augmentations [(7]. Generators are seg~-
ments which produce s sequence of values. They can
be further refined into initializations and s body,
wvhich is the portion that is executed many times.
Filters restrict that sequence of values. A termi-
ostor is 1like a filter, except that it has the
sdditional potential to stop execution of the loop.
An sugmeatation consumes values and produces
results. There are other vocabulary elements for
describing straight line code.

The taxonomy discussed up to this point pri-
marily captures informatioo about the form of pro-
grame (as opposed to their meaning). The only
semantic elements we have introduced describe the
substructure of built-in entities such as loops.
The next (more abstract) viewpoint considers pro-
grame to be built of objects with stereotyped pur-
poses. These are called typical programming pat-
terns (TPPs). Exsmples of TPPs include variable

iaterchanges, list insertions, and hash table
abstractions. These abstrsctions are the tools
employed by every expert programmer. Rich has

Jof 6

defined a library of euch TPPe [4] (he uses the

term cliche; in this paper, we use both terms
interchangeably).

The remaining databases (intentional aggre-
gates and documentation) provide methods for esso-
ciating the intentions behind a program with
specific features of code. They capture pragmatic
knowledge relating to the domain of application of
the program. Intentional aggregates sre a type of
formal documentation that allow the association of
larger program fragments with key concepts (sup-
plied by the user). They can be uged to collect a
set of TPPs and other program segments that imple-
ment a single conceptual function; for example, a
collection of TPPs representing queue operations
might be grouped (by the user) into an intentional
aggregate representing a scheduler.

The documentation database allovs the user to
associate comments with any of the program features
already described. At the lowest (i.e., textual)
level, this would take the form of in-line com-
ments. At other representational levels, the user
could, for example, document the data flow in &
particular module (saying why am input-—output rela-
tionship occurs), justify his wuse of particular
TPPs, or explain why particular syntactic features
are employed. The advantage of this technique over
current documentation practice is the ability to
make a direct association (via links maintained by
the IPE) between the documentation and what it
talks about, at an appropriate conceptual level.

4.2 KNOWLEDGE ACQUISITION

Since the EPM“s database is intended to sup-
port an actual editing system ian the near future,
it is important to address the question of where
its information is obtained. In our approach, the
different knowledge sources are acquired in part
from the user, and in part by sutomatic means.
Specifically, the syntactic representation can be
obtained directly from the textual represeatation,
and the segmented parse viewpoint can be con-
structed through data flow analysis techniques of
the kind developed by Waters [7].

The TPP structures are harder to obtain.
Recent research efforts indicate that general
recognition of cliches may be possible (1), but st
the current time, these techniques have not actu-
ally been demonstrated, The EPM will use wmanual
recognition techniques (at least until automatic
recognition techniques have beean rtefined). There
are two manual recognition techniques planned for
the system. In the first, the user poinis to a
piece of code and identifies it ss being s particu-
lar TPP (as s way of documenting the system), at
this point, once the scope has been narrowved dowa,
it may be possible to identify the subcomponents of
these programming cliches automatically. 1In the
second method, the user uses TPPs for program gen-
eration f(as in [B8]); by instantiating a TPP and
"filling in the blanks,"” the EPM can acquire all
the necegsary information,

‘
Loa

e
M
Adendonduedids

v
[A RPN L R o W

PRI A Y

T

Bl S I A B i o L AV

The ‘~tentional aggregate and documentation
vievs wmust be vholly obtained from the user. At a
minimux, the EPM’s planaed consistency mechanisms
will ideotify any of this information that may be
out of date due to modifications to the code.

5. THE PROGRAM REFERENCE LANGUAGE

In order to demonstrate the feasibility of the
EPM, we implemented a portion of the datsbase
described above, and built a version of the EPM’as
search facility, the Program Refereance Language
(PRL) which operates on that data. The PRL is &

tool for locating regions of program text based
upon a description provided by the user. As a sup-
port system, it oprovides progremmers with an

inteation-orieated vocabulary for specifying por-
tions of programs in situations where they may be
unfamiliar with the detailed structure of the code.
Thie might occur in the process of editing programs
vhich may be too large to remember explicitly, or
in the act of understanding code which has rarely
been seen before (as is often the case in mainte-

nance).

The PRL demonstration eystem allows program
search based on four of the representations
described sbove, namely the textual, syntactic,

segmented parse and typicsl programming pattern
views (Figure 3). These databases are connected
through a g¢code regjion abstraction that associates
program features with physical sections of program
text.

PROCRAN STNTAX
ezt mee

\
__—

S(OENTCD
PARSE

(OATA &
contRoL nLov)

“~\\\\\\\~\~

TYPICAL
PROGAAPI NG
PATT(ANS

Figure 3. The Program Reference
Language Implementation

The PRL has a flat information structure. It
represents each database in terms of a complex tree
or graph structure of frames. Although the system
can srbitrarily coovert between viewpoints by using
code regions as sa intermediary, the databases have
no direct lioks betwveen one another. These conver-
sioos are inherently heuristic since the separate

By

T

fiad

4 of 6

representations do not necessarily have a one-to-
one correspondence. The information in esch dats-
base is either sutomatically derived, or can be
reasonsbly obtained from the user. Ia situacions
where the latter is necessary, we have sssumed that

information may be provided in an incomplete form.

5.1 CODE PAINTING

From a computational poiat of view, the
problem

main
involved with rhis multiple representation

approach is to define a mechanism that is able to
compare inforwation obtained from the different
sources of knowledge. The PRL accomplishes this

via the code region abstraction, which functions as
4 common language that each of the representations
can use to communicate.

Code regions support two different approaches
to search. In the first method, which we call
sequential filtering, the user makes a gross stab
st selecting a code region by generating all of the
elements vhich satisfy some fairly general condi-
tion. He then sequentially restricts that set by
applying more and more conditions. For example, to
find “the loop which computes the sum of the test
scores”, he locates the set of all loops, and then
restricts it to the ones which involve test scores
and summations.

In the second approach, the user identifies a
collection of items, possibly from several dif-
ferent dstabsses, and intersects thee together to
find the elements which satisfy all of the condi-
tione he vants to impose. In this "code painting"
approsch, the PRL combines these items essentially
by overlaying the corresponding tegions of code.
For example, locating "the loops which compute
sums” is done (figuratively) by coloring all loops
red and all places that compute sums yellow. Any
region which comes up orange has sll of the proper-
ties that vere desired.

Code puiuting‘is a deliberately coarse affair.
It is designed to exploit the kind of incomplete or
even slightly inaccurate information which the EPM

will contain, given that much of the data is pro-
vided by the user. In some cases, code painting
may not identify the exact section of the program

which the user desired, but in the context of an
interactive system with a screen oriented display,
“close"” will be good encugh. To help the user see
the effects of code painting, it is possible to
highlight the identified section(s).

5.2 A SCENARIO USING THE PRL

The following example shows how the PRL uses
the code painting paradigm to answer the question
“find the initializations of the loop which com-
putes the sum of the test scores", given the Ada
program shown in Figure 4.

O RN G W S W Y

b s e a_a.ax x .

PR Y. }

RRSATAT

A

A

i

2

—

LR S S u |

U AL S

VW N

- e e s T e e e A I Rl et
- - - -

for MAXSIZE in 1..10 loop

‘an ad e sl ade il it S e . W wo e = m - -

5 of 6

TOTAL := ARRAYSUM (TEST-SCORES, MAXSIZE);

put (TOTAL);
end loop;

function ARRAYSUM (A: in ARRAY;

begin
SUM: REAL:= O;
for I in 1..N loop
SUM:= SUM + A(1);
end loop;
return SUM;
end ARRAYSUM;

Figure 4.

In this example, the user atarts by identify-
ing three sets of data, corresponding to the summa-
tion TPPs, syntactic loops, and segmented parse
frames involving the test score array.

> (index “summation tpp-database)
=> TPPsetl

> (index “loops syantax-database)
=> LOOPsetl:{1length 2]

> (index “TEST~SCORES segp-database)
=> SEGsetl:[length 6]

The program only contains one TPP, but there
are two loops, and several segments which relate to
the variable TEST-SCORES. It is important to
notice that all of these segments use the data con-
tained in the variable TEST-SCORES but do not
necessarily refer to it by that name (for example,
the literal “A(I)" in the ARRAYSUM function
accesses the test score array). This association
ie apparent from the dsta flow analysis within the
segmented parse.

The wuser intersects these descriptions by
invoking the code psinting paradigm. The code-
painting algorithm returns the largest region of
text which can be described in all three ways.

> (overlay-code-regions TPPsetl LOOPsetl SHGsetl)
=> CODE-REGIONL
**for I in l..N loop
SUM:= SUM « A(L);
end loop;**

In order to compute this information, the
overlay function automatically converts the input
sets into their corresponding regions of code.

Most of these translstions are automatically avail-
able (cthough heuristic in nature). In the case of
the TPP, the wuser had to define thet mapping at
some time.

At this point, the user has identified a loop
vhich computes the esum of the test scores. In
order to find the initialirzations of this code, he

N: in INTEGER) return INTHGER is

The Ada Program Used in the Scenario.

views this region from the segmented parse perspec-
tive (vhere initializations are represented expli-
citly), and scans it for segments of the appropri-
ate type. This is a filtering operation, in which
the user applies restrictions to & previously iden-
tified set of objects.

> (Filter (Segs-¥ithin CODE-REGION1)
‘(Seg-Type "“initialization"))
=> SEGset2:{length 2}

The PRL converts CODE-REGION] to a set of seg-
mented parse frames (a heuristic process), and the
function Segs-Within enumerates th. subsegments it
contains. The system identifies 'wo initializa-
tions as a result. The user prints them by con-
verting them to the textual view.

> (show! SEGset2)
=> for I in **], N** loop
=> **GUM: REAL := QO;w*

The ansewers correspond to the dinitializations
of the iteration variable "I", and the accumulation
variable, "“SUM"., Note that the PRL retrieves the
second initislization, even though it is lexically
outside of the summation loop itself. It is iden-
tified from the segmented parce analysis, which
associates & loop and its initializations no matter

how far apart they might have been in the original
code.

6. CURRENT STATUS AND FUTURE WORK

AL&DS is now developing & prototype version of
the IPE (in a three year, 2-3 person effort), which
is intended to demonstrate the efficacy of our
knowledge based approsch to the design of progranm-
ming support tools. The prototype will embody a
portion of 8ll of the facilities that have been
described. The IPE is currently targeted for the
Ada language. It will initially run on a Symbolics
3600, a fast, personal LISP computer that (features

e ————— Ol 4 -

a high-resolution bit-map displsy, but it is being
desigued to be portable to other systems (in par-
ticular, Unix).

We expect to augment the EPM’s database to
include more pragmatic information (e.g., the rela-
tion between requirements sad program structures),
and we iatend to extend the PRL to the point where
it will be able to automaticslly plsn and carry out
search requests of the kind demonstrated in this
peper (based on a single user query). When these
extensions are complete, the PRL vill define a more
formal reference language.

The cask of building a prototype for the IPE
involves a oumber of issues including the incremen-
tal modification of databases, and the recognition
of user intestions in code. In order to solve
these problems in the context of our applied
research, we expect to rely heavily on methods for
eliciting information from the user, and to focus
on ctemplate-oriented techniques for manipulating
programs,

Acknow]ledgements

We would like to thank Michael Brzustowicz snd Eric
Domeshek for their contributions to this project.

7. REFEXENCES

1. Brotsky, D., Master’s Thesis, MIT, forthcom-
ing.

~
.

Dean, Jeffrey S., and Brian P. McCune,
"Advanced Tools for Software Maintenance”,
AL&DS TR 3006-1, October 1982.

3. Nelson, T., "A New Home for the Mind," Datama-
tion, March 1982.

4. Rich, Charles, "Lnspection Methods in Progrsm~
ming", AI-TR~604, Artificial Intelligence
Laboratory, MIT, 1981.

5. Shapiro, Dauiel G., Brian P. McCune, and
Gerald A. Wilson, ‘Design of an Intelligent
Program Editor", AI&DS TR 3023-1, September
1982.

6. Teitelbaum, T., T. Reps, and S. Horwitz, "The
Why snd Wherefore of the Cornell Program Syn-
thesizer”, Proceedinge, ACM SIGPLAN/SIGOA

Conference on Text Msnipulatjon, June 1981,
pp. 8-16.

7. VWaters, Richard C., “Automatic Analysis of the
Logical Structure of Programs", AI-TR-492,
Artificisl Intelligence Laboratory, MIT, 1978.

8. Waters, R., "The Programmer s Appreatice:
Kuovledge Based Progrem Editing,™ I1EEE Tran-

gections on Softvare Engineering, SE-8, 1,
Jsnuary 1982, pp. 1-12.

LS AR e 4n Tane e S zasun-ite e A Te _T‘.'!

6 of 6

TNV TATT LY e Y e e

o

.....

SR PUIIALA 02

¢ APPENDIX B

This appendix contains a reprint of the paper "An Informal Study of
Software Malntenance Problems,” by Jeffrey S. Dean and Brian P. McCune.

PGB SR SBih sain.. (AEEENE L sut SEE JuEn b g

-48-

4
®
4
| 4
4
L
9
]
.,ﬂ
T g
®
-
9
N
,‘1
. -
4

)
PP PN

‘
~ OV

o T e ’
PN W]

]
e e CH C e e N ! e m kA g v e A el a e male A e

o ML s ueh soet andh Mun VS eSvCRONC MIEREINEr

——— — A el e

[Software Maintenance Workshop, December 1983.]

AN INFORMAL STUDY OF SOFTWARE MAINTERANCE PROBLENS

Jeffrey S. Dean
Arian P. HcCune

Advanced Information & Decision Systems
201 San Antonio Circle
Mountein View, Califoraia 94040

ABSTRACT

A study of software maintenance problems wss
performed as the first step of & project asimed at
suggesting advanced or novel techniques to increase
teliability and reduce costs during the maintenance
process. This paper summarizes sowe of the results
of the study.

INTRODUCTIOR

In an effort aimed st finding long term solutions
to the groving softvare maintenance problem, AL&DS
conducted a two year softvare maintenance study for
the Air Force {1]. The primary goal of this effort
vas to ideatify sdvaaced tools and techniques (with
particular emphasis on srtificisl intelligence
techniques) capsble of significantly impacting the
softvsre maintenance process vwithin Che aext
decade. The project was divided into three major
phases: (1) studying the softwsre maintenance
process snd identifying the wmajor problems; (2)
identifying tools snd techniques; and (3)
evslusting these tooleé and techniques. This paper
sunmarices our findiogs from the first phase of the
the project.

WHAT IS MAINTERANCEK?

For the purposes of this study, we used an
“ioclusive" definition of maintenasnce:

Softwsre maintenance is all those activities

associsted with & softvere system after the
systew has beeo initially defined, developed,
deployed, and accepted ss operastionsl,

Hsintensoce is primarily a reactive activity: it is
performed in response to requests (primarily
requests for modification of software), rather than
on the basis of some regular schedule.

This wvork vas supported by Rome Air Development
Center under centract F30602-80-C-0176.

OVERVIEW OF AIR FORCE SITES

To gein a better understanding of the probleas
encountered in large software msintensoce
‘eavironments, wve studied the maintensnce efforts st
several Air Force C3I softvare organizations. The
study cousisted of one or more days of intervieving
key personnel at each of the sites, followed by
questionnaires being sent to these sites.

Characteristics of the three Air Force sites were
collected during the interviews, and are summarized
below.

Site 1:

application: seatellite tracking and coantrol

softvare: integrated system, coded in Jovial

size: 1 million lines

hardvare: netvork of small, wmedium, sud lerge
.wachines .

developer: outside comtractors

maintainer: ten differeant contractors

process: batch processing, core patching

Site 2:

application: communicstions

softvare: oumerous systems, generally coded
in sssembly language

size: systems range in site from 25,000
to 560,000 lines of code

hardvare: variety of computers

developer: outside contractors

ueintaioer: in-house

process: maintenance generally done in batch
processing mode
Site J:

application: wide variety, from data processing
to strategic plasning

software: Qumetrous Systems, coded in a

variety of lsaguages
size: 24 willion lines of code

hardware: vide range of computers
developer: systems developed by outside
contractors
-
~C o -t PR . K
o ST T YN e
 d

s

)

2z

P

maintainer: wostly in-house, vith some outside
coatractors
process: outdated tools

YTHE SOFTWARE MAINTENANCE SURVEY

After the intervievs, we sent out an ioforumal

survey to personnel at these sites. The purpose of

the survey vas to gather more iunformation about the
maintenance activities, to provide backgrouand and
wotivation for later phases of the project. No
attempt vas Trde to do as thorough or as
statistically sophisticated ao approach as other
studies (such as [2])).

The survey was divided into three parcts:
l. Reasons: "Why is softwsre modified?"

2. Activities: ‘Where is time sp. ° during
maintensncel”

3. Problems: "Why is maintensnce so difficule?”

Reasons for Software Modification

We divided wodification requests into four
categories:

1. Correcting: "There was something wrong with
the software."

2. Adaptiog: "Something the aystem depeunded upon
bas changed.”

3. Perfecting: 'We wanted to fine-tune the
system."

4. Modifying: ‘We dido't like the system the way
it vas."

These categories are similar to those in the Lientr
aad Swanson study (2], with the sddition of one
more category (wmodifying). Respondente vere asked
to estimate the percentage of requests that fell
ioto each category. The aversged responses, in
descending order, vere as follows:

REQUEST PERCENTACGE
modifying [1:%4
correctiag 3t
perfecting 152
sdapting 82

Requests in the modifying category slone account
for almost half of the requests. Together wvith the
perfecting category (the other category for
“refinement” type requests), they accoust for over
€0X of the requests (similar to [(2]). Softwvare
waincenance has often been thought of as repairing
softvare. However, c(hese ouvumbers indicate that

softvare evolution (i.e., refining, as compared to
repairing) is & sigaificant part of the maintensnce
phase.

Software Msjintenance Activities

We divided softvare maintenance into & number of
activities, and asked respoundents to rate the
importance of each sctivity on a scale from 0 to 10
(vith 10 signifyiog “extreme amounts of time speat
on this task“). The averaged responses, in
decreasing order, vere as follows:

TASK IMPORTANCE
testing 6.5
coding 6.3
training of nev persoonel and users 4.8
monitoring, problem detection, disgaosis 4.7
desiga 4.4
documentation 3.9
managemeant 3.6
configuration coatrol 3.4
analysis and specification of requiremeats 2.9

It is interesting to note that more time was spent
on lowver level tasks (such as testing and coding)
thau oo higher level tasks (such as specification
and design). Unfortunately, our survey did not
probe sufficieatly to determine the ressons bebind
this distribution of effort; we csnonot tell if
higher level tasks wvere neglected, or if lower
level tasks were just inherently more time
consuming. If higher level tasks are indeed being
neglected, this would wost likely have a negative
impact oo the overall maintainability of software.

Softva Majntensnce Problems

The last sectios of the survey identified four
major softvare wmaintenance problems that were
idestified during intervievs. Respondents were
asked to rate the importance of each problem on a
scale from O to 10 (with 10 signifying “extremely
important problem™). These averaged respocses, in
descending order of iwportance, were as followe:

PROBLEN IMPORTANCE
high turnover of personael 8.7
understandiag softvare/

lack of good documentation 1.5
determining relevant places to make changes 6.9
mooitoring and diagnosiog operations 6.3

The personnel turnover problem in the Air Force is
the result of 4«0 sverage twvo year rotsation cycle
that csuses s coontinuing, regular turoover.

THE COMPREHENSION PROBLEM

The top tnree maintensnce problems all appear to
tevolve arouvnd e lack of wunderstanding of the
softvare and of the wmaintenance enviroonmeat. We
call c¢his the comprebension problem., The relation
of comprebension/understanding to these problems is
clear:

~ High cursover of personnel: Experienced
personnel are replaced with nev personnel who
are unfamiliar vith the applications software,
snd way be unfamilier wich the programming
eavirommeat (tools, operating procedures, etc.)
ss wvell. The turnover raste is so high that
there is little time allocated to update the
documentation adequately.

- Difficulty in understsading softvare/lack of
good documentation: Softvare to be maintained
is hard to wunderstand, particularly in the
abseace of current, high quality documentation.

- Determining sll rtelevant places to make
changes: Prograsmers have a hard time koowiag
wvhere to wmake changes because they do not
understand vell enaugh how the code works.

ADVANCED TOOLS YO REDUCE THE COMPREHEKSION PROBLEM

During the last twvo phases of this project, wve
identified wnioe tools/techniques for iwmproving the
msaintensnce process, and evaluated these idess by
saother set of surveys [1). The highest ranked
tools address the problem of comprehension by
explicitly collecting information about programs,
documentation, and/or the programming process, and
helping prograumers apply that information oa &
regular baeis.

CONCLUSIONS

The results of the survey shed 1light on three
important issues in the waintenance process.
Firet, moet of the requests for maintenance are
requests for refinement, rather than requests for
repair. This reinforces the idea that wmaintenance
is primarily a process of evolution. Second, most
of the time spent is spent on low-level tasks, such
as testing and coding. Finally, wost of the
difficulty in the maintensnce procees appears to
srise from . leck of wundersstanding of the
application softvare, as well as the masintenance
environment.

References

{1] Deso, J., and B. McCune, Adyenced Igols for
Softvare Maintenance. Rome Air Development Center,
RADC-TR-82-31), December 1982.

{2} Lieatz, B., anda E. B. Svanson, Softvsre
Maintepsnce Mansgement. Addisan-Wesley, 1980,

(3] stapire, D., snd B, McCuoe, “The fntelligent
Program Editor: A Koowledge~Based System for
Supporting Program snd Documentstion Maintenance,”
in Automatijng Intelligent Behavior: Applications
and Froptiers. IEEE Computer Society, May 1983,
PP~ 226-232.

P e B d g e i B e GBS A aen dea 5 o A v B A be S o hee -Mie b e S a o A Ll S vat et 0 ot

Appendix C

APPENDIX C.

This appendix contains a reprint of the paper "Trends for Advanced
Software Tools,” by Brilan P. McCune and Jeffrey S. Dean.

-49-

o PP IR ST S Wy o v s o — L. AR S S S WA S, T G WU SN S W PTNT ST VY S S S Wil ST WU N ST S U

- e d i SR N R . -

(Invited paper, EASCON '83, September 1983.1

YRZNDS FOR ADVANCED SOFYMARK TOOLS

Brian P. HcCune and Jeffrey S. Desa

Advanced Information & Decision Gystems
Mountsin Viewv, Cslifornia

ABSTRACT

A recently completed otudy determined the
ma jor problems in the maincensnce of Air Force com-
mand, control, cowmynicationa, snd intelligence
softvare and proposed a number of sdvanced softvare
tools to desl wvith these problems. Most of these
advanced tools will rely on kaovledge-based tech-
niques from the field of actificial intelligence
(Al). During the course of thie rescacrch, a number
of general trends were noted in the characteristics
of chese and ocher software tools, including both
Al and aon-Al tooles. Among these ¢trende are the
uee of knovledge of and reasoniag about the dinmain
of application, the performance of tool asctivities
in small, incrementsal steps to provide better feed-
back ¢o the prograsmer, the increasing incelligence
of wuser interfaces o softwvare tools, and the
f.in(cnan:e and yse of a global knowledge base
including a hiastory of vhat has been done before
and vhy. This paper discusses these and other
treade for gdvanced softvage tools.

1. INTRODUCYION

The effort and expense of maintsining software
heave beea recognized as majoc limitations on the
capabilities of cucrent softvere systems. The dif-
ficultien acise for eevecal cessons. First,
alchough hardware coste have decreased, software
expenses have skyrocketed due to the higher cost of
professional programmecs. Secound, as softvare pro-
jects have become wmoce and wmore subitious, the
techaical difficuley of wmaking changes ¢o the
tesulting progrems has iocreased dramatically. As
en illuscration of thie fact, the waintensnce costs
for lacge systems typically eurpsss the funds
tequired for their imitial developwent; the Depart-
ment of Defense nov speads wore than three billion
dollare per year on softvare wsaintenance. These
probleas are soddcessed in part by the creation of
etsadardized structured languages such as Ada, but
in our opinion they will only be solved by the

This research vas supported in part by Rome Arr
UVevelopment Center under contrsct £30602-80-C-0176
and by the Air Force Office of Scientific Research
under coatract FP49620-81-C-0067.

results of nev research into automsted prograsming
support eystems, e expect that many such tools
vill rely on the application of srctificial incelli-
gence (Al) techniques.

fo gain better insight into the specific prob-
leme of softvare mainteaance, we performed a study
vhich analyzed software maintenance problems in the
Air Force [Dean & McCune-82). The study comcluded
that the process of comprehending the form and
fuaction of existing softvare (i.e., what it does
and hov it does it) is the most crucisl step in the
waintenance process. A number of tools were
defined, each of which could provide a limited
operational cspability in the short tera (i.e.,
less than three years) and then graduslly be
enhanced ia the medium term (i.e., three to seven
years) aad beyound.

This “comprehension problem” is revealed ia
wany ways. To begin with, wost programming instal-
lations have a high turnover rate of personnel and
have trouble finding qualified ceplacements. As o
result, maintecance personnel are often unfamiliar
with the programs that are being waintained. At
the same time, documentation is often unavailable
or of poor quality. This increases the difficulty
of compreheading & given program. It ie not easy
to understanad s program by directly reading the
code becsuse of the quantity of decail involved aod
also because coding standards are poorly enforced
sad rarely sgreed upon. Finally, the process of
isolating bugs, designing solutions, and detesmin~-
iag the ramifications of changes is difficult in
the presence of sn incomplete undecstanding of the
progras’s organizatioa. The relstive difficuley of
this task is affected by the tools availadle to the
programmer.

The softvare maintensace study identified &
collection of tools designed to slleviate these
problems, all of vhich rely on ¢ sophisticated
understanding of the structure of prograss. Ia
effect, they operate by transferring eome of the
expertise currently in the minde of progremmecs
into s machine-usable forw that can be shared.
Ihree of the most relevant tool ideas are summar=
ized belov. Advanced Information & Decitioo Sye-
Cems is actively working on all three of these
tools.

- The Progpsmming Mansger (PH) assiste s progrem=
mer by systematically applying adminiscrative
.

P urTN

.

PRI - B A RSN SN

and technical policies. 1t enforces some pro-
cedures (e.g., testing of code before installa-
tion), euggests others (e.g., notifying a wuser
group of a change), and autowatically performs
some actions on its own. In order to perform
these functione, PM has a model of the underly-
10y environment and each tool in the environ-
ment, including calling options snd expected
output, The Programming Manager ie also
intended to capture heuristic knowledge about
code, for example, thst bugs in module A often
cause runtime errors in module B,

- The Intelligent Program Editor (ILPE) 15 a
knowledge-based tool for supporting the
development and malntenance of software
{Shapiro & McCune-83B]. 1t embodies a deep
understanding of the structure of programs, of
techniques for searching for relevant parts of
programs based upon complex queries [Shapiro &
McCune-83A], and of the manipulations that pro-
grammers typically apply to code. It can pro-
vide access to a variety of other tools that
deal with code, e.g., the Documentation Assis-
tant described below.

- The Documentation Aseistant is & system that
helps obtain, organize, access, and maintain
many different forms of documentation, ranging
from line-by-line comments to design principles
sad application-oriented requirements that
underly the atructure of the code as a wvhole.
The Documentation Assistant is intenced to pro-
vide knowledge that other systems (such as the
IPE) can employ.

2. TRENDS

In surveying existing production and
research-prototype tools, as well ae 1o our own
research efforts, some particularly lmportant
trends and techniques have surfaced. These trends
represent paradigme for the entire programming pro-
cess, capable of forming the basis of a8 new genera-
tion of programming tools. Other thao that, these
trends are fsirly dissimilar, varying in ecope from
the very broad to the fairly specific.

The remainder of this paper discusses these
general trends that we see occurring now and into
the future of software tool development. Defini-
tions of sepecitic tools that embody many of these
trends are presented in (Dean & McCune-82]; three
of these were mentioned above. We confine our-
selves to a discussion of trends for tools, rather
than wunderlying programming or related languages.
We also assume that for at least the next decade
programming eovironments ari the programming pro-
tess will evolve from the current state-of-the-art.
Thus, we duv not speculate on the potential of radi-
val or revolutionary alternatives to programming,
such a6 automatic programming [Elschlager &
Fhallips-82], 1n which & single wmonolithic tool
hides all processing details from the user.

. et -

We discuss nine important trends in program-
ming tools, programming eaviromments, and their
use. These trends are

1. Advanced capabilities

2. Domain knowledge and reasoning
3. Ability to be tailored

4. Life-cycle coverage

5. Tool integration

6. Advanced user interface

7. Integrated database

8. Incrementalism

9. Distribution

2.1 ADVANCED CAPABILITIES

An obvious trend in software tools 1is that
toward more advanced capabilities. This arises 1in
part from the continuing drop in hardware prices
and increase in the demand and price of skilled
programmers. It wakes economlic vense to automate
more and more of the clerical programming functions
as additional cpu cycles become cheaper than addi-
tional hours of human labor.

Probably more important in the long run than
cost trade-offs of hardware versus people are the
great technical advances that are on the horizon.
Advances in a number of areas are going to have an
important impact in the next decade. Among these
technical areas are:

- Artificial intelligence. Artificial intelli-
gence (Al) is the science and art of automating
problem-solving processes that are informal,
heuristic, and symbolic 1in nature. The sim-
plest definition of Al i1s any activity that is
performed by a non-human entity (typically a
digital computer) and that 18 ususlly con-
sidered to require intelligence when performed
by humans. At the core of Al are two notions:
the complex manipulation of symbols (as opposed
to numbers or text), and the use of heuristics
("rules of thumb") that can guide one quickly
to a likely or satisficing solution. Al sys-
tems usually perform complex inferencing that
involves combining the use of a oumber of
heuristics in an appropriaste fashion to solve a
problem. Much of the research in applying Al
to progremming has concentrated on (fully
sutomating the process, except the specifica-
tion stage. Al techniques such as heuristic
reasoning, learning, natural-language under-
standing, and representation of domain
knowledge may prove very useful when applied to
today’s programming environments. (Al 1& now
being applied to numerous other defense prob-
lems, such as ocean surveillance |Drazovich,
McCune, & Payne-82] and ship classification

+ ,‘
M ae' s alaa

s dn b

. ‘
PPNt

el

o
et

[

VSV |

|McCune & Drazovich-83].)

Very high-level languages. A very high-level
language (VHLL) 18 & programming language that
provides capabilities significantly beyond the
capsbrlities offered by traditional high-level
languages. The level of a language refers to

Ls similarity or closeness to machine
language. Assembly language 18 a8 low-level
language it Daps directly into wmachine

language and requires the programmer to be fam-
1liar with the basic operations of the target
machine. Languages like FORTRAN and PASCAL are
considered high-level programming languages
(HLLs), they provide the programmer with a com-
putational model that is somewhat higher than
machine level (e.g., by allowing the programmer
to talk about variables and loops, instead of
memory locations and jumps). Languages such as
APL and LISP are considered even higher level,
talling somewhere between HLLs and VHLLs; they
allow the programmer to talk about arrays,
lists, and the composition of operators.
Experimental VHLLs exist that provide represen-
tation of sets and mathematical operations oun
them (e.g., SETL [Kennedy & Schwartz-75]), or
vbjects and operations for specific application
areas. VHLLs remain 4 resesrch toprc because
the process of translating a VHLL program 1into
an efficient program 1s difficult. VHLLe can
wt1ll be effectively employed, by wvirtue of
their ability to reduce manpower coste.

Program transtormation. Progrem transtormation
ts the conversion of a program into another,
computationally "similar" program, where the
degree of similarity ranges from analogous to
¢quivaleot. Transtformations may be done ftor a

variety of reasons. I1f a program library con-
tains a rouline similar to what the programmer
needs, 1t may be possible to automatically

transform that routine into the desired one; 1f
a8 program 1s written in 8 nonprocedural specif-
tcation language, 1t way be necessary to
transform the program into 8 more procedural
form before it can be translsted 1uto some real
pregramming language; 1f the program 1s written
using inhereatly inefficient constructs,
transformation <can convert thoee constructs
into more efficient ones. Taking the 1dea o
transformation one etep further, the entire
programming proceds can be thought of a8 a
series of program transformations or refine-
meunts, going from a high-level specification to
the actual code.

Formal verification, Formal veritication 1s the
Jemonstration that &8 piece ol program 18 con-
slstent with o given wpecttication, Thas
demonstration 1s carried out as a prou! withan
the framework ot a tormul wmathemstical systewm
that 10 wmust cases 1s based on farst-order
predicate loguc. The wspecitication tormally
describes dedired properties of the program, 1t
may give a complete specitication of functionsl
behavior (relationship between tnput and output
values) or & specitication ot certain aspects,
like absence of particular runtime errors,
security of data flows, termination, or bounds

on running time. Formal program verification
1s one form of program validation. It differs
from others by requiring rigorous and tormal
specifications se well as the capability for
reasoning about programs, and in turn provides
4 wuch higher degree of assurance that & pro-
gram indeed performs ae specified.

- Symbolic execution. Symbolic execution means

evaluation of a program with symbolic values
inetead of actual data. Symbolic execution
creates eymbolic expressions that represent the
values of outputs as a function of iloput vari-
ables, and (symbolic) predicates ("path condi-
tions") that characterize the subset of values
that cause the progrem to execute a particular
program path. Symtolic evaluation thus shows
the dependencies between the values of dif-
ferent variables and between data and control
flows. Symbolic execution provides a versatile
and powerful tool for debugging and analyzing
programs. In comparison with ordinary testing,
one symbolic execution of a program may
correspond to a potentially large (even infin-
ite) number of normal test rune. Symbolic exe-
cution may be considered a wesk forw of program
verification; it shares some of the problems of
verification systems.

Graphice and other advanced 1input-oulput.
Graphics and other forms of advanced input-
output (1/0) are valuable in improving the user
interface. For comprehension of cowplex ianfor-
mation, graphical displays excel at helping
users reach their potential. At worst, they
can be used to miwic the linear textual output
of hardcopy terwinals; more appropriately, they
can be used to display drawings and sechematics
as vell as dynamic ('"woving") pictures. Termi-
nals with full-page, high-~resolution displays
sre now availeble (e.g., Xerox CSTAR, Apple
LISA, Symbolics 3600 LISP workstation). These
allow the wuse of screen pages that way be a»
large as actual hardcopy pages; additional
software provides the capability for stacking
or overlapping these "windows".

Software mwetrice. Measurements of performance
are necessary to judge both programmers and
software, Used appropriately, this data can be
used to objectively improve the sottware pro-
cess. For example, perforwance statistics for
a programmer ca8n be wuseful 1n determining
appropriste training courees; statistics about
the quality of & program can be used to help
decide 1f the program should be wodified or
rewritten. Typical software metrics provide
quantitative measures of prograw complexity.
An example metric 1w the degree of interconnec-
tivity of & eet of modules a8 determined by aun
analys1e of their date and control tlow graphe.
These weasures can be used to predict estimated
development or maintenance eftort, to guitde the
development and wmaintensnce process, or to
predict the rteliability (lack ot errorse) ot s
pProgram.

Computer-assisted 1nstruction. The tield of
computer-aseisted 1nstruction (CAl) hae been

PRy

'

PRGN

R

N [P S P W . SO B N} -

v

attacking subjects such as logic and foreign
languages, 48 well as more elementary topics,
tor eome time. A small smount ot work has been

done on teaching particular programming
languages and, to some extent, programming
techniques. To speed up the learning cycle,

the CAI system usually hae access to cthe pro-
pramming tools for the appropriste language, in
order to complle and run programs and automati-
cally grade performance by examining their out-
put .

2.2 DOMAIN KNOWLEDGE AND REASONING

By domain we refer to an area of expertise,
such a8 programming or a particular application
area. Knowledge of and reasoning about a specific
Jomain can be quite useful 1p 8 programming eupport
eavironment. This 16 nicely 1llustrated with an
exampie from an analogous sltuation. Suppose you
bed a technical manuscript that needed to be typed.
It you gave the manuscript to 8 typist who spoke no
English, you would expect, at best, a8 word-tor-word
typewritlen copy of the manuscraipt, It you gave it
to an kEnglish-speaking typtst, you would hope that
simple errors, such av misspellings and punctuation

virtore, would be tixed. If you gave it to an
tuglish teacher wmoonlighting as a typisi, you
wouldn 't be surprised to tind that some of your
ptose had been 1mproved upon. And 1t you were
tucky eanough to tind & typiret familiar with the
Joma o ot discourse (of the manuscript), you

shouldn t be surprised to find factual errors
corrected.

The problem of getting the wmanuscript typed
with the best possible result 1s similar to the
problem ot writing a program. You select some type
ol editor o use in entering the program text. A
standard text editor would be comparable to the
non-tnglish-apeaking typist: text 18 entered
exactly as typed, with no enhancements. The
tnglish-speaking typist could be compared to a
syntax-ortented editor, which can eliminate syntac—
tic program errors and misspelled keyvords (e.y.,
GANUALF s editor, MENTOR, Cornell Program Syn-
thesizer). The other two typists have a fair
degree of knowledge and understand how to apply it.
The English teacher/typist knows about the language
itself (rather than the content of what 18 belng
sard). Thie situation 18 comparable to a program-
wing language-specific editor, wvhich applies
howledyge sbout the dvmain ot progreamming; the edi-
tur can help with genersl programming techniques,

«an catch certain types o semanlic errors, cdn
wake Btyle suggestions, and can improve the yeneral
tiow ot the program, The technical typiwt who
understsnds the content ot what 18 being sard 1w
atialogous tu an editor that utilizes knowledge
aboul the application domain. it can help with
domatn-specitac techniques, such as algoritha

development, and can catch certain kinds ot prag-
tatlc errors that are dependent upon the specific
appiliation domain.

S0, 1N 8 programming support enviroument, 1t
1» deeirable to have twe tvpes ot expertise,

programming expertise and application expertise.
An “"ulcimate" goal wight be to endow the system
with expertise equaling that of a human; the eystem
would exhibit programming expertise comparable to
that of a computer scientist and application exper-
tise similar to that of a domain specialist. Note
that in a programming support eaviroument, the
latter type of knowledge is more specialized, heace
less widely applicable (a new knowledge base 1is
needed for each application area).

The use of domain knowledge and reasoning in
the programming environment will drastically change
the whole concept of programming. It will allow
the software toole to truly help the programmer,
freeing the programmer to concentrate on higher-
level issues.

2.3 ABILITY TO BE TAILORED

Future tools will have the ability to be
highly tailored to suit the needs of the particular
situation, including management hierarchy, applica-
tion domain, other tools available in the program-
ming environment, and idiosyncrasies of the tool
users. Obviously, this level of variability goes
well beyond the simple parawreterization or runtime
options found in many tools today. Modelinyg large
bodies of facts aund preterences requires knowledge
representation techniques from Al. Modifying these
bodies requires an ability to elicit new or wmodi-
tied knowledge from users or to lesrn by observa-
tiou. These aress are among the most difficult in
Al research, but the potential 18 tremendous.

2.4 LIFE-CYCLE COVERAGEK

Future enviromments will have capabilities
that support more of the software life-cycle. Most
important, waintenance of software after initial
release is recognized as typically requirinyg two-
thirds of the overall lifetime costs of a software
system. Therefore tools must be designed with
maintenance, as well as development, in mind. Sowe
tools way be developed eolely for wuse 1n the
maintenance phase.

The use of tools to date has been concentrated
in the coding and testiog phases of software
development. There is an obvious reason for this:
source and executable code and data are otten the
only forms of information stored 1in the computer
and therefore available to tools. This situation
18 slowly changing, 88 other forms of informstion
are formslized and automated, ranging from require-
ments and design specifications, to formal documen-
tation and test datu specifications, to management
schedulew and methodolugy descriptions, to measure-
ments gsined by spplying sottware wmetrics. For
vach new type of 1ntormation, tools are needed to
asslet 1n 1te creation, sunalysis, and transtorme-
tion into other types of information.

Because 80 much wore intormation than just
cade will be dealt with by tools, many future tools
will be 1ndependent of a &pecific programming
languaye.

Aa o

’

i e e ' atalsa

a4

).

2.5 TOOL INTEGRATION

There is a saying that "the whole is more than
the sum of its parts". This notion of synergy 1is

wnportant in the design of software tools. When
several tools work together, they may provide some-
thing that neither one could alone provide. The

term 1ntegration 18 wused here to refer to the
degree of synergy and close coupling between tools.
Tools 1n a well-integrated system exhibit a large
degree of synergy (as a result of working well
together). Since synergy results from interdepen—
dencies, 1ntegrated tools are likely to share
information, share common procedures, or provide
complementary functions. Systems such as INTERLISP
{Teitelman & Masinter-81) and UNIX [Kernighan &
Mashey-811 owe a large amount of their success to
therr 1ntegration.

Well-1ntegrated systems provide several 1mpor-
tant advantages:

- Human comprehension is aided by the wuniformity
provided by a well-integrated system. A con-
s1stent underlying philosophy a1ds users in
making inferences sbout how the system works.

- Au integrated tool set allows one to put tools
tugether quickly 1n order to perform tasks that
may not have even been envisioned by the system
designers. This benefit is well known to UNIX
uBers,

- Integrated tools work together, allowing more
etticieat and effective performance. Effi-
ciency 16 gained when one tool can make use of
another’s work, eliminsting redundant computa-
tions;, for example, symbol tables created by a
compiler can be used by debuggers, linkers,
cross-reference listers, etc. Effectiveness is
increased when tools can make use of each oth-
ers’ 1ntormation,; for example, a8 compiler wmay
be able to apply optimizing code generation
strategles by getting intormation trom a pro-
pram veritier that the compiler cannot deduce
by purely Byntactic means.

Related to integration 18 the 1dea of com-
pleteness. Completeness means that the user should
be able to do everything that might be needed. The
beauty of an integrated system 1s marred when a
usir has to expend a large amount ot energy Lo do
something that 18 conceptually si1mple but that
et t allowed by the wdystem. For example, the
INTERLISP system asllows certain common monitor-
vevel commands Lo be pertormed without leaving the
svstem, To perform other cowmands, there 18 & sim-
vl intertace that (reates 8 nNew process runniog
the operating system s cowmand processor, allowing
(he uwer (o execute arbitrsry cooumands and then
tetura to INTERLISP without any loss of continuity.

UDesigning & vongistent yet unable syslem
requites a great deal of ingenuity and nsight oo
the part ot the designers. But the effort does pay
sty conwider the pupularity of UNIX. The Stone-
man requiremente for Ada Program Support Eonviroon-
wents (APSEs) alwo specity an integrated tool ser;

the success of this requirement will be see¢n as
APSEs are implemented and used.

2.6 ADVARCED USER INTERFACE

Future tools will have very advanced inter-
faces to programmers and other users. The moust
viweible part of the interface is the collection of
1/0 techniques available. Input techniques may
range from gselection of commands from menus, point-
ing using s mouse or other cursor positioning dev-
ice, natural-language 1nput, and speech 1nput.
Output techniques include high-resolution graphice
that are capable of dieplaying publication-quality
program listings, the use of color to 8id in focus-
ing attention, and speech output.

Despite the current interest in advanced 1/0
techniques, the use of these techniques alone can-
not solve software development and wmaintenance
problems. The primary ditficulty 1e 1o deciding
wvhat information to communicate to the programmer,
rather than how to communicste it. A tool that
vees some combination of advanced 1/0 techniques
can be changed to work with simpler methods, usu-
ally without a significant loss in information or
functionality.

Many tools converse with the PrOgT amme 1
interactively. To be wused effectively, 1t 18
necessary for the user to understand what the tool
is saying and how to respond to 1t. On-line help
facilities can teasch generic commsnd structures,
but tools must also be able to explain the details
of the current situation. Knowledge-based Al sys-
tems are generally capable of explaining their
current state and what chain of reasoning got them
there.

Going even further, advanced wuser interfaces
should provide some of the intelligence and sssis-
tance that a human programming sssietant might pro-
vide. An intelligent user interface not only makes
lite easier for the programmer; i1t helps 1ncrease
programmer productivity and software reliability.
Here are some of the kinde ot features that an
intelligent user interface might provide:

- Programmability. The user interface in a4 pro-
gramming @upport euvirownent should provide the
programmer with tools for automating his own
tasks, either by the programmer explicitly pro-
gramming the tasks or by the system learning.

- Error prevention. By making “bad™ things hard
to do, it is lees likely that they will be done
inadvertently. Warnings about daugerous
actions, before they are pertormed, turther
reduce the chance ot ecrror.

- Error detection and correction. It 16 uwot too
difficule to catch many types of errovs
sutomatically. Every attempt should be wmade o
catch errors as ecarly as possible, the later an
error 1s detected, the mure expensive it 1s Lo
fix, Error diasgnostice should be meaningiul to
the user, not only tuv the person who wrote
them. Some errurs, vepecially willy, carelews

.

e s aae san e o

L

Py —— s e S atnl SN C) .

ones (e.g., spelling errors), can be corrected

without too wmuch difficulcey.

- Recoverability. If an error 1s made, the wuser
should be able to recover as easily as possi-
ble. The system should have safeguards to pro-
vide the wuser with certsin paths of recourse,
e.x., by allowing actions (such as deleting a
tile) to be undone. "“Forgiveness' 1s impor-
tant. Making & blunder 18 bad enough, one
should not have to spend hours or days to right
it.

- Active help. 1f the user repeatedly does things
incorrectly, there may be no need to wait untal
help 1s requested. In many cases, the user may
not be aware that help exi1sts, or may not know
how to ask for it, Help should be offered
sutomatically.

- Non-interactive operation. The syetem should be
able to function without human intervention if
necegsary. If a programmer leaves the terminal
while performing a task, there 1s oftentimes no

need to bring things to a halt wvhen only non-
cructal human input 18 needed.
In order to accomplish these goals, an

advanced user 1interface muet have models of both
the user and the process by which tools are wused.
lt 1s necessary to understand the programmer’ s
actions (what he 18 doing) sand intentions (what he
will be or wants to be doing). For example, an
editor 1ncorporating programming domain knowledge
needs to know what parts of a program the program-
mer will be writing or changiag, as well as the
(expected) effect this will have on other parts of
the system. An editor incorporating application
domain knowledge needs to know what techniques the
programmer will be utilizing, as well as the type
ot output and results expected. As soon as an
environment has a model of what tools are avalilable
and how to access them, 1t 18 feaslble to comstruct
comprehenslve or meta-tools, tools that reason
about and 1nvoke other tools on behalf of the user,

Tu help the programmer wmake decisions about
what to do, tools need to understand the program-
miny process Ltselt 1n order to determine what ‘he
prograumer 1s doing right or wrong. Wk, 3
spe.1tic methodology 18 chosen tor an
S0l tlware

enviroman.,
tools should be provided to s1d each step
vt the me.hodology.

2.] INTEKCRATED DATABASE

Intormation in must
18 #sloted

programuing envigomments

as a det of individual files of variocus

types. This 1s essentrally just s classical file
system a8 provided by most operating systems. The
next generation ot enviromments will probably wuse

something closer to a relational model of dsta, so
that unitorm random access 1s8 possible to all

objects and su that cowplex relational objects such

evolve into & full-fledged knowledge base that
incorporstes all of the previous information plus
complex semantic models and sets of heuristics.

The history list or audit trail 18 cne data-

base component that 1s recognized as important by
most state-of-the-art environments (e.g., INTER-
LISP, APSEs). The notion of computational history

refers to the information avatlable during the
course of some computation. For example, when
using a text editor, the history includes the edit-
ing commands ae well as the inserted and/or deleted
text; when ueing a compiler, the history 1ncludes
the original wsource code, the parse trees, parse
tree transformations, and generated code. Some of
this information has no long-term value beyond
immediate consumption by & program; but much of the
information is quite valuable, either because it is
expensive to recompute (e.g., parse trees for a
large module) or becsuse it cannot be recomputed
(e.g., a record of all operations performed by the
veer).

There are numerous reasons why history is a

neceesary ingredient in advanced programming
enviromments. First of all, sophisticated program-
ming environments wmust allow programmers to make

changes incremeatally, so that the cost of
small changes is small. To accomplish this,
mediate results of various system tools and
ties (e.g., compilers, linkers) must be kept
around. Another need is accountability: records
of all important activities should be maintained so
it can always be determined what has been done and
who has done it. Ilmportaot activities include
things like changes to code, document updates, sys-
tem builds, etc. From the perspective of the user
interface, preservation of & history is also deair-

making
inter-
utilai-

able. Some programming systems, such ae INTEKLISP,
allow the user to see a record of what has been
done and allow transactions to be ‘'replayed".

Finally, hietory is necedsary for the application
of programming domain knowledge and ressoning: to
understand what the programmer 1is doing, 1L 18§
necessary to understand the context in which the
programmer has been working.

2.8 IMNCREMENTALISHM

Support of incremental change 18 vital for the
malntenance of all but the emallest systems. It 1s
unacceptable and unnecessary to
system to be

require a whole
rebuilt each time a small change 18

made: wunacceptable because the cost 18 too high,
unnecessary because changes usually leave wmany
parts of the system unaffected.

The wove toward building eystems that handle

incremental change has been slow, primarily since
it 18 (in general) wore difficult to build tuole
that are 1ancremental. There are several problems.
First of all, new algorithms msy have to be devised
or old ‘“batch' algorithms wmodified, 1n order to
handle incremental requests. Another problem 1s
lack of information: most tools throw out informa-

.
-
®
y
o
1
4
°
1
o
:1
;
1
°
4
B
)
°

v structured documentation can be easily stored tion as soon a8 they are done with 1t, rather than
and 4sccessed. As wmore Al-bssed tools are incor- leaving 1t around for future reference. An example
porated tate an enviromment, the databave will of this 18 seymbol table nformation, which the ®
.
- - ‘- - = h -
<o - \ ~ at¥ o~ dein i = dh

ra

compiler builds up for each module and then usually
diecards. This means that the symbol table must be
rebualt for each recompilation, even 1if code
changea had no effect on it.

Incrementalism 18 a technique vital for the
development and wmaintenance of large systems, yet
tew existing programming tools make use of it.
Aside trom gome research on incremental techniques
for syntactic parsing, most attempts at lincorporat-
1ng incrementalism have been somewhat ad hoc (and
less than generally applicavle). The idea of
incrementalism falls out naturally when some of the
other techniques discussed earlier in this section
(e.g., history) are incorporated into the program-
wing environment .

2.9 DISTRIBUTION

As more of the non-coding functions of the
software life-cycle are automated, it becounes
cleasrer that the model of a single programmer
interacting with a unique copy of the environment
and database 1s not adequate. Large programming
projects have numerous individuals operating ssyn-
chronously. These personnel may have different
functions (e.g., supervisor, designer, coder, tes-
ter, documenter), different physical locations,
different "home" computers, etc. Thus, programming
enviromaents are fast entering the era of distri-
buted systems and processeing, with all of the stan-
dacd problems of planning and coordipation, syn-
chronization of computer objects and events,
maintenance of multiple copies of objects, etc.

A number of architectures are possible for
distributed programming enviromments. The simplest
has each programmer accessing the primary develop-
ment computer (probably a mainframe) via a front-
end computer (probably am advanced personal com-—
puter). A few of the more interactive tools (e.g.,
editor, language 1interpreter) would run on the
front-end, while most would remain on the mainframe
(e.g., optimizing compiler, database handler). A
more distributed architecture would have copies of
ecach tool at each node, with no node being central.
Finally, individual tools may slso be distributed
across processors someday.

3. CONCLUSION

We have presented nine trends that cut across

wany pousible programming tools and support
envitunments, Each trend will eventually require
the use ot Al to achieve 1ts potential., In this

role, Al 1s not a radical, high-risk approach to
the sottware problem, but a technology that will
make puseible wajor enhancements to every sspect of
the programming paradigm of today.

TWTW TGS A WL T ATV (TN N Wy

4. ACKNOWLEDCMENT

This paper has bencefited from discussions with
Gerald A. Wilson end Daniel G. Shapiro.

5. REFERENCKS

- [Dean & McCune-82} Jeffrey S. Dean and Brian P.
McCune, Advanced Tools for Software HMainte-
nance, Technical Report 3006-1, Advanced Infor-

mation & Decision Systems, Mountain
fornia, October 1982.

View, Cal:i-

[Drazovich, McCune, & Payne-82) Robert J. Dra-
zovich, Brian P. McCune, and J. Roland Payne,
“Artificial Intelligence: An Emerging Military
Technology,"” invited paper, Conference Recourd,

EASCON “82: Fifteenth Annual Electronics and

Aerospace Systems Conference, Institute of
Electrical and Electronics Engineers, Inc.,

Washington, D.C., September 1982,

348.

{Elschlager & Phillips-82) Robert A.

pages 34l-

Elechlager

and Jorge V. Phillips, editore, “Automatic Pro-

gremming”, in Avron Barr and Edward
bsum, editors, The Handbouk of

A. Feigen-
Artificiasl

Intelligence, Volume 2, Chapter 10, William
Kaufmann, Inc., Los Altos, California, 1982,

pages 295-379.

(Kennedy & Schwartz-75] K. Kenoedy aod J.
Schwartz, "An Introduction to the Set Theoreti-
cal Language SETL", Computers snd Mathematics,

wvith Applications, Volume 1, Number 1, 1975,

pages 97-119.

[Kernighan & Magshey-81) Brian W. Kernighan and
John R. Mashey, “The UNIX Prograwming Eaviron-

ment”, Computer, Volume 14, Number

1981, pages 12-24.

{McCune & Drezovich-83] Brian P.

4, Apral

McCune and

Robert J. Drazovich, "Rader with Sight and
Knowledge", invited paper, Defense Electronics,

Volume 15, Number 8, August 1983.

[Shapiro & McCune-83A! Daniel G. Shapiro and
Brian P. McCune, Searching a Knuwledge Base of
Programs and Documentation, Technical Memoran-

dum 1014-2, Advanced Information

& Decision

Systems, Mountain View, California, January

1983.

[Shapiro & McCune-83B} Daniel G. Shapirc and
Brian P. McCune, "The Intelligent Program Edi-~

tor: A Knowledge-Based System for

Supporting

Program and Documentation Maintenance",
Automating Inteliigent Behavior: Applications

aund Frontiers, Proceediogs, Trends and Applica-
tions 1983, IEEE Computer Society, Loe Angeles,

California, May 1983, pages 226-232.

[Teitelman & Mawrinter-8t] Warren Tei

telman and

iaa aa

| T S T B S S D it Aam e a5 g aaa Ji e A Al M S S VISP A" et B Mk B Sl S Rl aei "= - LR Hiin-Rte ha N

° 8 o
S
- Larry Mssinter, "The INTERLISP Programming T

Environment", Computer, Volume 14, Number 4, '
April 1981, pagea 25-33. SRR

| SN

I

I

L

. -
- S

"
- -
[N _{
-

- - 1
«

-

- . A B - - - e . - - . . N S

- <.t -~ S o -
T Ty N M - - . e . Sre ey - s e - o
PR SR SR I ST ST Wtk L PO, LY - PO, A S o S RN b B 2% b, A W P rvd o doand ol

T LR TN T ST TR YR

T

2—-85

-
l -

Y

o
W?vb[OV rlT llr‘ B O,

